zoukankan      html  css  js  c++  java
  • Caer -- a friendly API wrapper for OpenCV

    Caer

    https://github.com/jasmcaus/caer/

    流形的现代计算机视觉库

    Caer是一个轻量、高性能视觉库,为了高性能AI研究设计。

    此框架简化了计算机视觉的使用方法,通过抽象掉非必要的模板代码,并给使用者以灵活性,快速建立深度学习原型,和研究的想法。

    最终的结果是建立一个库,在设计上非常不同,容易理解,对于其它人易用,有很大的乐趣去使用。

    使用目标人群,在深度学习和计算机视觉领域:

    • 学生
    • 研究者
    • 业务爱好者
    • 领域专家

    Caer - Modern Computer Vision on the Fly

    Caer is a lightweight, high-performance Vision library for high-performance AI research. We wrote this framework to simplify your approach towards Computer Vision by abstracting away unnecessary boilerplate code giving you the flexibility to quickly prototype deep learning models and research ideas. The end result is a library quite different in its design, that’s easy to understand, plays well with others, and is a lot of fun to use.

    Our elegant, type-checked API and design philosophy makes Caer ideal for students, researchers, hobbyists and even experts in the fields of Deep Learning and Computer Vision.

    Overview

    此库支持GPU加速

    包含以下组件:

    • 颜色空间
    • 样本数据
    • 图像预处理
    • 图像变换和增强
    • 视频工具

    通常适用于:

    • OpenCV使用GPU特性的替代品
    • 计算机视觉平台,提供最大化的特性和速度

     

    Caer is a Python library that consists of the following components:

    ComponentDescription
    caer A lightweight GPU-accelerated Computer Vision library for high-performance AI research
    caer.color Colorspace operations
    caer.data Standard high-quality test images and example data
    caer.path OS-specific path manipulations
    caer.preprocessing Image preprocessing utilities.
    caer.transforms Powerful image transformations and augmentations
    caer.video Video processing utilities

    Usually, Caer is used either as:

    • a replacement for OpenCV to use the power of GPUs.
    • a Computer Vision research platform that provides maximum flexibility and speed.

    Installation

    See the Caer Installation guide for detailed installation instructions (including building from source).

    Currently, caer supports releases of Python 3.6 onwards; Python 2 is not supported (nor recommended). To install the current release:

    $ pip install --upgrade caer

    Minimal Example

    import caer
    
    # Load a standard 640x427 test image that ships out-of-the-box with caer
    sunrise = caer.data.sunrise(rgb=True)
    
    # Resize the image to 400x400 while MAINTAINING aspect ratio
    resized = caer.resize(sunrise, target_size=(400,400), preserve_aspect_ratio=True)

    caer.resize()

    For more examples, see the Caer demos or Read the documentation

    Sphinx Doc

    https://caer.readthedocs.io/en/latest/

    利用了 OpenCV 和 Pillow 库的能力, 加速你的计算机视觉工作流程,

    完全兼容 其它框架 PyTorch 和 TensorFlow

    Documentation

    Caer is a lightweight Computer Vision library for high-performance AI research. It simplifies your approach towards Computer Vision by abstracting away unnecessary boilerplate code enabling maximum flexibility. By offering powerful image and video processing algorithms, Caer provides both casual and advanced users with an elegant interface for Machine vision operations.

    It leverages the power of libraries like OpenCV and Pillow to speed up your Computer Vision workflow — making it fully compatible with other frameworks such as PyTorch and Tensorflow.

    This design philosophy makes Caer ideal for students, researchers, hobbyists and even experts in the fields of Deep Learning and Computer Vision to quickly prototype deep learning models or research ideas.

    出处:http://www.cnblogs.com/lightsong/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。
  • 相关阅读:
    机器学习PAL产品优势
    机器学习PAI产品架构
    机器学习PAI
    Auto ML自动特征工程
    Auto ML自动调参
    自动机器学习(AutoML)
    MegEngine基本概念
    MegEngine计算图、MatMul优化解析
    https://music.163.com/#/playlist?id=977461211
    阅后归档 20201020
  • 原文地址:https://www.cnblogs.com/lightsong/p/14484933.html
Copyright © 2011-2022 走看看