A Knight's Journey
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 35342 | Accepted: 12051 |
Description
Background
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
Input
The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes
how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .
Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves
followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.
If no such path exist, you should output impossible on a single line.
If no such path exist, you should output impossible on a single line.
Sample Input
3 1 1 2 3 4 3
Sample Output
Scenario #1: A1 Scenario #2: impossible Scenario #3: A1B3C1A2B4C2A3B1C3A4B2C4
给一个棋盘,给你一匹马,马只能走“日”字格,问马能否不重复地走完所有格并且输出其走的位置的字典顺序。
头一次做深搜,中间出了不少问题,包括color在深搜之后居然没给它还原回去,这样的错误也行。。。
然后字典顺序是一个,如何记录结果path路径。
深搜给我的第一个感受就是能不用全局变量就不用全局变量,总在这里容易出错,另外,记录走的步数要设立一个参数step,之后再每层加1,这样的做法才是正途。。。
稀里糊涂地说了这么多,都是自己当时犯下的错,各种辛酸只有自己明白了。。。
代码:
#include <iostream> #include <algorithm> #include <cmath> #include <vector> #include <string> #include <cstring> #pragma warning(disable:4996) using namespace std; struct struct_a{ int x; int y; }path[900]; int Test,i,p,q,m,n,flag,num; int move_x[10]={-1,1,-2,2,-2,2,-1,1};//改成字典顺序 int move_y[10]={-2,-2,-1,-1,1,1,2,2}; int color[30][30]; int dfs(int a,int b,int step) { if(flag==1) return 1; int k,temp_x,temp_y; if(step==q*p) { flag=1; return 1; } for(k=0;k<8;k++) { temp_x = a + move_x[k]; temp_y = b + move_y[k]; if(temp_x>=1 && temp_x<=p && temp_y>=1 && temp_y<=q && color[temp_x][temp_y]==0) { color[temp_x][temp_y] = color[a][b]+1; path[step].x=temp_x;//别用其他变量标记,递归这样不容易出现问题 path[step].y=temp_y; dfs(temp_x,temp_y,step+1); if(flag) return 1; } } color[a][b]=0;//如果最终选择不是这里,要记得清空 return 0; } int main() { cin>>Test; for(i=1;i<=Test;i++) { cin>>p>>q; cout<<"Scenario #"<<i<<":"<<endl; flag=0; memset(color,0,sizeof(color)); color[1][1]=1; path[0].x=1; path[0].y=1; dfs(1,1,1); if(flag==1) { int v; for(v=0;v<p*q;v++) { char temp_c=path[v].y-1+'A'; cout<<temp_c<<path[v].x; } cout<<endl; } else cout<<"impossible"<<endl; cout<<endl; } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。