Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 15989 | Accepted: 7303 |
Description
One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road irequires Ti (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
Input
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.
Output
Sample Input
4 8 2 1 2 4 1 3 2 1 4 7 2 1 1 2 3 5 3 1 2 3 4 4 4 2 3
Sample Output
10
Hint
求目标点到图中的其他点来回的最小值。
Dijkstra直接求来回的距离,然后比较求出最小值。
代码:
#include <iostream> #include <algorithm> #include <cmath> #include <vector> #include <string> #include <cstring> #pragma warning(disable:4996) using namespace std; const int MAX = 100005; int edge[1005][1005]; int vist[1005],vist2[1005],minidis1[1005][1005],minidis2[1005][1005]; int N,M,X; void init() { int i,j; for(i=1;i<=N;i++) { for(j=1;j<=N;j++) { if(j==i) { edge[i][j]=0; minidis1[i][j]=0; minidis2[i][j]=0; } else { edge[i][j]=-1; minidis1[i][j]=MAX; minidis2[i][j]=MAX; } } } for(i=1;i<=N;i++) { vist[i]=0; vist2[i]=0; } } void dijkstra(int i) { int j,k; int position=i; int position2=i; vist[position]=1; vist2[position]=1; minidis1[i][position]=0; minidis2[position][i]=0; for(j=1;j<=N-1;j++)//一共要添加进num-1个点 { for(k=1;k<=N;k++) { if(vist[k]==0 && edge[position][k]!=-1 && minidis1[i][position]+edge[position][k] < minidis1[i][k])//新填入的点更新minidis { minidis1[i][k]=minidis1[i][position]+edge[position][k]; } if(vist2[k]==0 && edge[k][position2]!=-1 && minidis2[position2][i]+edge[k][position2] < minidis2[k][i])//新填入的点更新minidis { minidis2[k][i]=minidis2[position2][i]+edge[k][position2]; } } int min_value=MAX,min_pos=0; int min_value2=MAX,min_pos2=0; for(k=1;k<=N;k++) { if(vist[k]==0 && minidis1[i][k]<min_value)//比较出最小的那一个作为新添入的店 { min_value = minidis1[i][k]; min_pos = k; } if(vist2[k]==0 && minidis2[k][i]<min_value2)//比较出最小的那一个作为新添入的店 { min_value2 = minidis2[k][i]; min_pos2 = k; } } vist[min_pos]=1; position=min_pos; vist2[min_pos2]=1; position2=min_pos2; } } int main() { int i; cin>>N>>M>>X; init(); int temp1,temp2,temp3; for(i=1;i<=M;i++) { cin>>temp1>>temp2>>temp3; edge[temp1][temp2]=temp3; } memset(vist,0,sizeof(vist)); memset(vist2,0,sizeof(vist2)); dijkstra(X); int ans=-1; for(i=1;i<=N;i++) { if(i==X)continue; ans=max(ans,minidis1[X][i]+minidis2[i][X]); } cout<<ans<<endl; return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。