zoukankan      html  css  js  c++  java
  • [LeetCode] 768. Max Chunks To Make Sorted II 可排序的最大块数 II

    This question is the same as "Max Chunks to Make Sorted" except the integers of the given array are not necessarily distinct, the input array could be up to length 2000, and the elements could be up to 10**8.


    Given an array arr of integers (not necessarily distinct), we split the array into some number of "chunks" (partitions), and individually sort each chunk.  After concatenating them, the result equals the sorted array.

    What is the most number of chunks we could have made?

    Example 1:

    Input: arr = [5,4,3,2,1]
    Output: 1
    Explanation:
    Splitting into two or more chunks will not return the required result.
    For example, splitting into [5, 4], [3, 2, 1] will result in [4, 5, 1, 2, 3], which isn't sorted.
    

    Example 2:

    Input: arr = [2,1,3,4,4]
    Output: 4
    Explanation:
    We can split into two chunks, such as [2, 1], [3, 4, 4].
    However, splitting into [2, 1], [3], [4], [4] is the highest number of chunks possible.
    

    Note:

    • arr will have length in range [1, 2000].
    • arr[i] will be an integer in range [0, 10**8].

    769. Max Chunks To Make Sorted的拓展,这一题可以有重复的数字。

    解法:能形成块儿的数字之和跟排序后的数组的相同长度的子数组的数字之和是相同的。

    Algorithm: Iterate through the array, each time all elements to the left are smaller (or equal) to all elements to the right, there is a new chunck.
    Use two arrays to store the left max and right min to achieve O(n) time complexity. Space complexity is O(n) too.
    This algorithm can be used to solve ver1 too.

    Java:

    class Solution {
        public int maxChunksToSorted(int[] arr) {
            int n = arr.length;
            int[] maxOfLeft = new int[n];
            int[] minOfRight = new int[n];
    
            maxOfLeft[0] = arr[0];
            for (int i = 1; i < n; i++) {
                maxOfLeft[i] = Math.max(maxOfLeft[i-1], arr[i]);
            }
    
            minOfRight[n - 1] = arr[n - 1];
            for (int i = n - 2; i >= 0; i--) {
                minOfRight[i] = Math.min(minOfRight[i + 1], arr[i]);
            }
    
            int res = 0;
            for (int i = 0; i < n - 1; i++) {
                if (maxOfLeft[i] <= minOfRight[i + 1]) res++;
            }
    
            return res + 1;
        }
    }  

    Python:

    def maxChunksToSorted(self, arr):
            res, c1, c2 = 0, collections.Counter(), collections.Counter()
            for a, b in zip(arr, sorted(arr)):
                c1[a] += 1
                c2[b] += 1
                res += c1 == c2
            return res
    

    C++:

    class Solution {
    public:
        int maxChunksToSorted(vector<int>& arr) {
            int res = 0, sum1 = 0, sum2 = 0;
            vector<int> expect = arr;
            sort(expect.begin(), expect.end());
            for (int i = 0; i < arr.size(); ++i) {
                sum1 += arr[i];
                sum2 += expect[i];
                if (sum1 == sum2) ++res;
            }
            return res;
        }
    };
    

    C++:

    class Solution {
    public:
        int maxChunksToSorted(vector<int>& arr) {
            int res = 1, n = arr.size();
            vector<int> f = arr, b = arr;   
            for (int i = 1; i < n; ++i) f[i] = max(arr[i], f[i - 1]);   
            for (int i = n - 2; i >= 0; --i) b[i] = min(arr[i], b[i + 1]);
            for (int i = 0; i < n - 1; ++i) {
                if (f[i] <= b[i + 1]) ++res;
            }
            return res;
        }
    };
    

    C++:

    class Solution {
    public:
        int maxChunksToSorted(vector<int>& arr) {
            int res = 1, n = arr.size(), curMax = INT_MIN;
            vector<int> b = arr;    
            for (int i = n - 2; i >= 0; --i) b[i] = min(arr[i], b[i + 1]);
            for (int i = 0; i < n - 1; ++i) {
                curMax = max(curMax, arr[i]);
                if (curMax <= b[i + 1]) ++res;
            }
            return res;
        }
    };
    

    C++:

    class Solution {
    public:
        int maxChunksToSorted(vector<int>& arr) {
            stack<int> st;
            for (int i = 0; i < arr.size(); ++i) {
                if (st.empty() || st.top() <= arr[i]) {
                    st.push(arr[i]);
                } else {
                    int curMax = st.top(); st.pop();
                    while (!st.empty() && st.top() > arr[i]) st.pop();
                    st.push(curMax);
                }
            }
            return st.size();
        }
    };
    

      

    类似题目:

    [LeetCode] 769. Max Chunks To Make Sorted 可排序的最大块数  

      

    All LeetCode Questions List 题目汇总

  • 相关阅读:
    21-MySQL-Ubuntu-快速回到SQL语句的行首和行末
    2- SQL语句的强化
    1-数据准备
    20-MySQL-Ubuntu-数据表的查询-子查询(九)
    19-MySQL-Ubuntu-数据表的查询-自关联(八)
    18-MySQL-Ubuntu-数据表的查询-连接(七)
    17-MySQL-Ubuntu-数据表的查询-分页(六)
    16-MySQL-Ubuntu-数据表的查询-分组与聚合(五)
    15-MySQL-Ubuntu-数据表的查询-聚合函数(四)
    14-MySQL-Ubuntu-数据表的查询-范围查询(三)
  • 原文地址:https://www.cnblogs.com/lightwindy/p/10474712.html
Copyright © 2011-2022 走看看