zoukankan      html  css  js  c++  java
  • [LeetCode] 272. Closest Binary Search Tree Value II 最近的二叉搜索树的值 II

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest to the target.

    Note:

    • Given target value is a floating point.
    • You may assume k is always valid, that is: k ≤ total nodes.
    • You are guaranteed to have only one unique set of k values in the BST that are closest to the target.

    Follow up:
    Assume that the BST is balanced, could you solve it in less than O(n) runtime (where n = total nodes)?

    Hint:

    1. Consider implement these two helper functions:
      i. getPredecessor(N), which returns the next smaller node to N.
      ii. getSuccessor(N), which returns the next larger node to N.
    2. Try to assume that each node has a parent pointer, it makes the problem much easier.
    3. Without parent pointer we just need to keep track of the path from the root to the current node using a stack.
    4. You would need two stacks to track the path in finding predecessor and successor node separately.

    270. Closest Binary Search Tree Value 的拓展,270题只要找出离目标值最近的一个节点值,而这道题要找出离目标值最近的k个节点值。

    解法1:Brute Force, 中序遍历或者其它遍历,同时维护一个大小为k的max heap。

    Java:

    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode(int x) { val = x; }
     * }
     */
    public class Solution {
        public List<Integer> closestKValues(TreeNode root, double target, int k) {
            LinkedList<Integer> res = new LinkedList<>();
            inOrderTraversal(root, target, k, res);
            return res;
        }
        
        private void inOrderTraversal(TreeNode root, double target, int k, LinkedList<Integer> res) {
            if (root == null) {
                return;
            }
            inOrderTraversal(root.left, target, k, res);
            if (res.size() < k) {
                res.add(root.val);
            } else if(res.size() == k) {
                if (Math.abs(res.getFirst() - target) > (Math.abs(root.val - target))) {
                    res.removeFirst();
                    res.addLast(root.val);
                } else {
                    return;
                }
            }
            inOrderTraversal(root.right, target, k, res);
        }
    }

    Java:

    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode(int x) { val = x; }
     * }
     */
    public class Solution {
        private PriorityQueue<Integer> minPQ;
        private int count = 0;
        public List<Integer> closestKValues(TreeNode root, double target, int k) {
            minPQ = new PriorityQueue<Integer>(k);
            List<Integer> result = new ArrayList<Integer>();
             
            inorderTraverse(root, target, k);
             
            // Dump the pq into result list
            for (Integer elem : minPQ) {
                result.add(elem);
            }
             
            return result;
        }
         
        private void inorderTraverse(TreeNode root, double target, int k) {
            if (root == null) {
                return;
            }
             
            inorderTraverse(root.left, target, k);
             
            if (count < k) {
                minPQ.offer(root.val);
            } else {
                if (Math.abs((double) root.val - target) < Math.abs((double) minPQ.peek() - target)) {
                    minPQ.poll();
                    minPQ.offer(root.val);
                }
            }
            count++;
             
            inorderTraverse(root.right, target, k);
        }
    } 

    Java:

    /** 
     * Definition for a binary tree node. 
     * public class TreeNode { 
     *     int val; 
     *     TreeNode left; 
     *     TreeNode right; 
     *     TreeNode(int x) { val = x; } 
     * } 
     */  
    public class Solution {  
          
        public List<Integer> closestKValues(TreeNode root, double target, int k) {  
            PriorityQueue<Double> maxHeap = new PriorityQueue<Double>(k, new Comparator<Double>() {   
                @Override  
                public int compare(Double x, Double y) {  
                    return (int)(y-x);  
                }  
            });  
            Set<Integer> set = new HashSet<Integer>();  
              
            rec(root, target, k, maxHeap, set);  
              
            return new ArrayList<Integer>(set);  
        }  
          
        private void rec(TreeNode root, double target, int k, PriorityQueue<Double> maxHeap, Set<Integer> set) {  
            if(root==null) return;  
            double diff = Math.abs(root.val-target);  
            if(maxHeap.size()<k) {  
                maxHeap.offer(diff);  
                set.add(root.val);  
            } else if( diff < maxHeap.peek() ) {  
                double x = maxHeap.poll();  
                if(! set.remove((int)(target+x))) set.remove((int)(target-x));  
                maxHeap.offer(diff);  
                set.add(root.val);  
            } else {  
                if(root.val > target) rec(root.left, target, k, maxHeap,set);  
                else rec(root.right, target, k, maxHeap, set);  
                return;  
            }  
            rec(root.left, target, k, maxHeap, set);  
            rec(root.right, target, k, maxHeap, set);  
        }  
    }  
    

    Java: A time linear solution, The time complexity would be O(k + (n - k) logk). Space complexity is O(k).

    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode(int x) { val = x; }
     * }
     */
    public class Solution {
        public List<Integer> closestKValues(TreeNode root, double target, int k) {
            List<Integer> result = new ArrayList<>();
            if (root == null) {
                return result;
            }
             
            Stack<Integer> precedessor = new Stack<>();
            Stack<Integer> successor = new Stack<>();
             
            getPredecessor(root, target, precedessor);
            getSuccessor(root, target, successor);
             
            for (int i = 0; i < k; i++) {
                if (precedessor.isEmpty()) {
                    result.add(successor.pop());
                } else if (successor.isEmpty()) {
                    result.add(precedessor.pop());
                } else if (Math.abs((double) precedessor.peek() - target) < Math.abs((double) successor.peek() - target)) {
                    result.add(precedessor.pop());
                } else {
                    result.add(successor.pop());
                }
            }
             
            return result;
        }
         
        private void getPredecessor(TreeNode root, double target, Stack<Integer> precedessor) {
            if (root == null) {
                return;
            }
             
            getPredecessor(root.left, target, precedessor);
             
            if (root.val > target) {
                return;
            }
             
            precedessor.push(root.val);
             
            getPredecessor(root.right, target, precedessor);
        }
         
        private void getSuccessor(TreeNode root, double target, Stack<Integer> successor) {
            if (root == null) {
                return;
            }
             
            getSuccessor(root.right, target, successor);
             
            if (root.val <= target) {
                return;
            }
             
            successor.push(root.val);
             
            getSuccessor(root.left, target, successor);
        }
    }  

    C++:

    class Solution {
    public:
        vector<int> closestKValues(TreeNode* root, double target, int k) {
            vector<int> res;
            priority_queue<pair<double, int>> q;
            inorder(root, target, k, q);
            while (!q.empty()) {
                res.push_back(q.top().second);
                q.pop();
            }
            return res;
        }
        void inorder(TreeNode *root, double target, int k, priority_queue<pair<double, int>> &q) {
            if (!root) return;
            inorder(root->left, target, k, q);
            q.push({abs(root->val - target), root->val});
            if (q.size() > k) q.pop();
            inorder(root->right, target, k, q);
        }
    };  

    类似题目:

    [LeetCode] 270. Closest Binary Search Tree Value 最近的二叉搜索树的值 

      

    All LeetCode Questions List 题目汇总

  • 相关阅读:
    抽签问题及优化
    P1020
    p1852ants
    1,三角形
    TG3
    如何看懂一篇题解
    Unsupported major.minor version 51.0 错误解决方案
    weblogic初学笔记2-在Linux上部署项目
    一块移动硬盘怎样兼容Mac和Windows系统,并且可以在time machine上使用
    org.hibernate.HibernateException: connnection proxy not usable after transaction completion
  • 原文地址:https://www.cnblogs.com/lightwindy/p/8637045.html
Copyright © 2011-2022 走看看