Numbers can be regarded as product of its factors. For example,
8 = 2 x 2 x 2; = 2 x 4.
Write a function that takes an integer n and return all possible combinations of its factors.
Note:
- Each combination's factors must be sorted ascending, for example: The factors of 2 and 6 is
[2, 6]
, not[6, 2]
. - You may assume that n is always positive.
- Factors should be greater than 1 and less than n.
Examples:
input: 1
output:
[]
input: 37
output:
[]
input: 12
output:
[ [2, 6], [2, 2, 3], [3, 4] ]
input: 32
output:
[ [2, 16], [2, 2, 8], [2, 2, 2, 4], [2, 2, 2, 2, 2], [2, 4, 4], [4, 8] ]
Numbers can be regarded as product of its factors. For example,
8 = 2 x 2 x 2; = 2 x 4.
Write a function that takes an integer n and return all possible combinations of its factors.
Note:
- Each combination's factors must be sorted ascending, for example: The factors of 2 and 6 is
[2, 6]
, not[6, 2]
. - You may assume that n is always positive.
- Factors should be greater than 1 and less than n.
Examples:
input: 1
output:
[]
input: 37
output:
[]
input: 12
output:
[ [2, 6], [2, 2, 3], [3, 4] ]
input: 32
output:
[ [2, 16], [2, 2, 8], [2, 2, 2, 4], [2, 2, 2, 2, 2], [2, 4, 4], [4, 8] ]
写一个函数,给定一个整数n,返回所有可能的因子组合。
解法:递归。从2开始遍历到sqrt(n),能被n整除就进下一个递归,当start超过sqrt(n)时,start变成n,进下一个递归。
Java:
public class Solution { public List<List<Integer>> getFactors(int n) { List<List<Integer>> result = new ArrayList<List<Integer>>(); helper(result, new ArrayList<Integer>(), n, 2); return result; } public void helper(List<List<Integer>> result, List<Integer> item, int n, int start){ if (n <= 1) { if (item.size() > 1) { result.add(new ArrayList<Integer>(item)); } return; } for (int i = start; i * i <= n; ++i) { if (n % i == 0) { item.add(i); helper(result, item, n/i, i); item.remove(item.size()-1); } } int i = n; item.add(i); helper(result, item, 1, i); item.remove(item.size()-1); } }
Python: Time: O(nlogn) Space: O(logn)
class Solution: # @param {integer} n # @return {integer[][]} def getFactors(self, n): result = [] factors = [] self.getResult(n, result, factors) return result def getResult(self, n, result, factors): i = 2 if not factors else factors[-1] while i <= n / i: if n % i == 0: factors.append(i); factors.append(n / i); result.append(list(factors)); factors.pop(); self.getResult(n / i, result, factors); factors.pop() i += 1
C++:
// Time: O(nlogn) = logn * n^(1/2) * n^(1/4) * ... * 1 // Space: O(logn) // DFS solution. class Solution { public: vector<vector<int>> getFactors(int n) { vector<vector<int>> result; vector<int> factors; getResult(n, &result, &factors); return result; } void getResult(const int n, vector<vector<int>> *result, vector<int> *factors) { for (int i = factors->empty() ? 2 : factors->back(); i <= n / i; ++i) { if (n % i == 0) { factors->emplace_back(i); factors->emplace_back(n / i); result->emplace_back(*factors); factors->pop_back(); getResult(n / i, result, factors); factors->pop_back(); } } } };
类似题目:
[LeetCode] 39. Combination Sum 组合之和
[LeetCode] 40. Combination Sum II 组合之和 II
[LeetCode] 216. Combination Sum III 组合之和 III
[LeetCode] 377. Combination Sum IV 组合之和 IV