zoukankan      html  css  js  c++  java
  • [LeetCode] 313. Super Ugly Number 超级丑陋数

    Write a program to find the nth super ugly number.

    Super ugly numbers are positive numbers whose all prime factors are in the given prime list primes of size k.

    Example:

    Input: n = 12, primes = [2,7,13,19]
    Output: 32 
    Explanation: [1,2,4,7,8,13,14,16,19,26,28,32] is the sequence of the first 12 
                 super ugly numbers given primes = [2,7,13,19] of size 4.

    Note:

    • 1 is a super ugly number for any given primes.
    • The given numbers in primes are in ascending order.
    • 0 < k ≤ 100, 0 < n ≤ 106, 0 < primes[i] < 1000.
    • The nth super ugly number is guaranteed to fit in a 32-bit signed integer.

    264. Ugly Number II 的拓展,还是找出第n个丑陋数,但质数集合不在只是2,3,5,而是可以任意给定。难度增加了,但本质上和Ugly Number II 没有什么区别,由于不知道质数的个数,可以用一个idx数组来保存当前的位置,然后从每个子链中取出一个数,找出其中最小值,然后更新idx数组对应位置,注意有可能最小值不止一个,要更新所有最小值的位置。

    解题思路:
    要使得super ugly number不漏掉,那么需要使用每个因子去乘以其对应的“第一个”丑数。那么何为对应的“第一个”丑数?

    首先,利用ugly[]数组来保存所有的超级丑数,ugly[i]表示第i+1个超级丑数;

    接着利用pointer[]数组来表示每个因子对应的“第一个”丑数的下标。pointer数组长度当然需要和primes长度一致,且初始化为0,代表着每个因子对应的“第一个”丑数都是ugly[0];

    接下来我们以primes[2,7,13,19],pointer[0,0,0,0],ugly[0]=1作为初始条件往下看:

    遍历primes数组,用每个因子都乘以其对应的第一个丑数,即ugly[0]=1,可以发现1x2=2是最小值,故ugly[1]=2;但要注意,此时的pointer数组发生了变化:

    由于当前产生的丑数2是由2这个因子乘以它的对应“第一个”丑数得到的,因此需要将pointer[0]加一。pointer[0]是2这个因子对应的“第一个”丑数的下标,因为当前已经使用了2x1,如果不更新,则下一轮还是会用2这个因子去乘以第一个丑数(ugly[0]).将其更新后,则意味着2这个因子对应的第一个丑数已经改变了,变成了ugly[1].而其他三个对应的“第一个”丑数还是ugly[0]。

    我们接着看下一轮:2x2【即ugly[pointer[1]]x2】,1x7,1x13,1x19,发现还是2这个因子得到的数最小,故更新:ugly[2]=2x2=4,pointer[0]=2;

    下一轮:4x2,1x7,1x13,1x19,可以发现当前这一轮最小值是7,且由因子7产生,故更新:ugly[3]=7,pointer[1]=1;

    以此类推....
    如果更新过程中,出现最小值不止一个的话,则其对应的pointer的值都需要增加1。

    Java:

    public int nthSuperUglyNumber(int n, int[] primes) {
            int[] ugly = new int[n+1];
            ugly[0]=1;
            int[] pointer = new int[primes.length];
            for(int i=1;i<n;i++) {
                int min=Integer.MAX_VALUE;
                int minIndex = 0;
                for(int j=0;j<primes.length;j++) {
                    if(ugly[pointer[j]]*primes[j]<min) {
                        min=ugly[pointer[j]]*primes[j];
                        minIndex = j;
                    }else if(ugly[pointer[j]]*primes[j]==min) {
                        pointer[j]++;
                    }
                }
                ugly[i]=min;
                pointer[minIndex]++;
            }
            return ugly[n-1];
        }
    

    Java:1

    public int nthSuperUglyNumberI(int n, int[] primes) {
        int[] ugly = new int[n];
        int[] idx = new int[primes.length];
    
        ugly[0] = 1;
        for (int i = 1; i < n; i++) {
            //find next
            ugly[i] = Integer.MAX_VALUE;
            for (int j = 0; j < primes.length; j++)
                ugly[i] = Math.min(ugly[i], primes[j] * ugly[idx[j]]);
            
            //slip duplicate
            for (int j = 0; j < primes.length; j++) {
                while (primes[j] * ugly[idx[j]] <= ugly[i]) idx[j]++;
            }
        }
    
        return ugly[n - 1];
    }
    

    Java:2

    public int nthSuperUglyNumber(int n, int[] primes) {
            int[] ugly = new int[n];
            int[] idx = new int[primes.length];
            int[] val = new int[primes.length];
            Arrays.fill(val, 1);
    
            int next = 1;
            for (int i = 0; i < n; i++) {
                ugly[i] = next;
                
                next = Integer.MAX_VALUE;
                for (int j = 0; j < primes.length; j++) {
                    //skip duplicate and avoid extra multiplication
                    if (val[j] == ugly[i]) val[j] = ugly[idx[j]++] * primes[j];
                    //find next ugly number
                    next = Math.min(next, val[j]);
                }
            }
    
            return ugly[n - 1];
        }
    

    Java: 3 index heap 

    public int nthSuperUglyNumberHeap(int n, int[] primes) {
        int[] ugly = new int[n];
    
        PriorityQueue<Num> pq = new PriorityQueue<>();
        for (int i = 0; i < primes.length; i++) pq.add(new Num(primes[i], 1, primes[i]));
        ugly[0] = 1;
    
        for (int i = 1; i < n; i++) {
            ugly[i] = pq.peek().val;
            while (pq.peek().val == ugly[i]) {
                Num nxt = pq.poll();
                pq.add(new Num(nxt.p * ugly[nxt.idx], nxt.idx + 1, nxt.p));
            }
        }
    
        return ugly[n - 1];
    }
    
    private class Num implements Comparable<Num> {
        int val;
        int idx;
        int p;
    
        public Num(int val, int idx, int p) {
            this.val = val;
            this.idx = idx;
            this.p = p;
        }
    
        @Override
        public int compareTo(Num that) {
            return this.val - that.val;
        }
    } 

    Python:

    def nthSuperUglyNumber(self, n, primes):
            ugly = [1]
            pointers = [0]*len(primes)
            
            for i in range(1,n):
                minu = float("inf")
                minIndex = 0
                for j in range(len(primes)):
                    if primes[j] * ugly[pointers[j]] < minu:
                        minu = primes[j] * ugly[pointers[j]]
                        minIndex = j
                    elif primes[j] * ugly[pointers[j]] == minu:
                        pointers[j] += 1
                ugly.append(minu)
                pointers[minIndex] += 1
            return ugly[-1]  

    Python:

    # Heap solution. (620ms)
    class Solution(object):
        def nthSuperUglyNumber(self, n, primes):
            """
            :type n: int
            :type primes: List[int]
            :rtype: int
            """
            heap, uglies, idx, ugly_by_last_prime = [], [0] * n, [0] * len(primes), [0] * n
            uglies[0] = 1
    
            for k, p in enumerate(primes):
                heapq.heappush(heap, (p, k))
    
            for i in xrange(1, n):
                uglies[i], k = heapq.heappop(heap)
                ugly_by_last_prime[i] = k
                idx[k] += 1
                while ugly_by_last_prime[idx[k]] > k:
                    idx[k] += 1
                heapq.heappush(heap, (primes[k] * uglies[idx[k]], k))
    
            return uglies[-1]
    

    Python:

    # Time:  O(n * k)
    # Space: O(n + k)
    # Hash solution. (932ms)
    class Solution2(object):
        def nthSuperUglyNumber(self, n, primes):
            """
            :type n: int
            :type primes: List[int]
            :rtype: int
            """
            uglies, idx, heap, ugly_set = [0] * n, [0] * len(primes), [], set([1])
            uglies[0] = 1
    
            for k, p in enumerate(primes):
                heapq.heappush(heap, (p, k))
                ugly_set.add(p)
    
            for i in xrange(1, n):
                uglies[i], k = heapq.heappop(heap)
                while (primes[k] * uglies[idx[k]]) in ugly_set:
                    idx[k] += 1
                heapq.heappush(heap, (primes[k] * uglies[idx[k]], k))
                ugly_set.add(primes[k] * uglies[idx[k]])
    
            return uglies[-1]
    

    Python:  

    # Time:  O(n * logk) ~ O(n * klogk)
    # Space: O(n + k)
    class Solution3(object):
        def nthSuperUglyNumber(self, n, primes):
            """
            :type n: int
            :type primes: List[int]
            :rtype: int
            """
            uglies, idx, heap = [1], [0] * len(primes), []
            for k, p in enumerate(primes):
                heapq.heappush(heap, (p, k))
    
            for i in xrange(1, n):
                min_val, k = heap[0]
                uglies += [min_val]
    
                while heap[0][0] == min_val:  # worst time: O(klogk)
                    min_val, k = heapq.heappop(heap)
                    idx[k] += 1
                    heapq.heappush(heap, (primes[k] * uglies[idx[k]], k))
    
            return uglies[-1]    

    C++:

    class Solution {
    public:
        int nthSuperUglyNumber(int n, vector<int>& primes) {
            vector<int> res(1, 1), idx(primes.size(), 0);
            while (res.size() < n) {
                vector<int> tmp;
                int mn = INT_MAX;
                for (int i = 0; i < primes.size(); ++i) {
                    tmp.push_back(res[idx[i]] * primes[i]);
                }
                for (int i = 0; i < primes.size(); ++i) {
                    mn = min(mn, tmp[i]);
                }
                for (int i = 0; i < primes.size(); ++i) {
                    if (mn == tmp[i]) ++idx[i];
                }
                res.push_back(mn);
            }
            return res.back();
        }
    };
    

    C++:  

    class Solution {
    public:
        int nthSuperUglyNumber(int n, vector<int>& primes) {
            vector<int> dp(n, 1), idx(primes.size(), 0);
            for (int i = 1; i < n; ++i) {
                dp[i] = INT_MAX;
                for (int j = 0; j < primes.size(); ++j) {
                    dp[i] = min(dp[i], dp[idx[j]] * primes[j]);
                }
                for (int j = 0; j < primes.size(); ++j) {
                    if (dp[i] == dp[idx[j]] * primes[j]) {
                        ++idx[j];
                    }
                }
            }
            return dp.back();
        }
    };
    

      

    类似题目:

    [LeetCode] 263. Ugly Number 丑陋数

    [LeetCode] 264. Ugly Number II 丑陋数 II

    All LeetCode Questions List 题目汇总

  • 相关阅读:
    LCT
    Knights0.
    Beautiful Sequence
    Mole and Abandoned Mine
    防御准备
    最小生成树计数
    Miners
    朝暮(枚举基准 容斥)
    Dynamic Rankings(整体二分)
    BZOJ 3875 Ahoi2014 骑士游戏
  • 原文地址:https://www.cnblogs.com/lightwindy/p/9758211.html
Copyright © 2011-2022 走看看