Given a root node reference of a BST and a key, delete the node with the given key in the BST. Return the root node reference (possibly updated) of the BST.
Basically, the deletion can be divided into two stages:
- Search for a node to remove.
- If the node is found, delete the node.
Note: Time complexity should be O(height of tree).
Example:
root = [5,3,6,2,4,null,7] key = 3 5 / 3 6 / 2 4 7 Given key to delete is 3. So we find the node with value 3 and delete it. One valid answer is [5,4,6,2,null,null,7], shown in the following BST. 5 / 4 6 / 2 7 Another valid answer is [5,2,6,null,4,null,7]. 5 / 2 6 4 7
给一个二叉搜索树BST的root节点和一个key值,删除节点值是key的节点,并把它子节点中的一个放在删除节点的位置。
解法1:递归
解法2:迭代
Java:
public TreeNode deleteNode(TreeNode root, int key) { if(root == null){ return null; } if(key < root.val){ root.left = deleteNode(root.left, key); }else if(key > root.val){ root.right = deleteNode(root.right, key); }else{ if(root.left == null){ return root.right; }else if(root.right == null){ return root.left; } TreeNode minNode = findMin(root.right); root.val = minNode.val; root.right = deleteNode(root.right, root.val); } return root; } private TreeNode findMin(TreeNode node){ while(node.left != null){ node = node.left; } return node; }
Java: Iterative
private TreeNode deleteRootNode(TreeNode root) { if (root == null) { return null; } if (root.left == null) { return root.right; } if (root.right == null) { return root.left; } TreeNode next = root.right; TreeNode pre = null; for(; next.left != null; pre = next, next = next.left); next.left = root.left; if(root.right != next) { pre.left = next.right; next.right = root.right; } return next; } public TreeNode deleteNode(TreeNode root, int key) { TreeNode cur = root; TreeNode pre = null; while(cur != null && cur.val != key) { pre = cur; if (key < cur.val) { cur = cur.left; } else if (key > cur.val) { cur = cur.right; } } if (pre == null) { return deleteRootNode(cur); } if (pre.left == cur) { pre.left = deleteRootNode(cur); } else { pre.right = deleteRootNode(cur); } return root; }
Python:
# Time: O(h) # Space: O(h) class Solution(object): def deleteNode(self, root, key): """ :type root: TreeNode :type key: int :rtype: TreeNode """ if not root: return root if root.val > key: root.left = self.deleteNode(root.left, key) elif root.val < key: root.right = self.deleteNode(root.right, key) else: if not root.left: right = root.right del root return right elif not root.right: left = root.left del root return left else: successor = root.right while successor.left: successor = successor.left root.val = successor.val root.right = self.deleteNode(root.right, successor.val) return root
Python:
def deleteNode(root, key): if not root: # if root doesn't exist, just return it return root if root.val > key: # if key value is less than root value, find the node in the left subtree root.left = deleteNode(root.left, key) elif root.val < key: # if key value is greater than root value, find the node in right subtree root.right= deleteNode(root.right, key) else: #if we found the node (root.value == key), start to delete it if not root.right: # if it doesn't have right children, we delete the node then new root would be root.left return root.left if not root.left: # if it has no left children, we delete the node then new root would be root.right return root.right # if the node have both left and right children, we replace its value with the minmimum value in the right subtree and then delete that minimum node in the right subtree temp = root.right mini = temp.val while temp.left: temp = temp.left mini = temp.val root.val = mini # replace value root.right = deleteNode(root.right,root.val) # delete the minimum node in right subtree return root
C++:
class Solution { public: TreeNode* deleteNode(TreeNode* root, int key) { if (!root) return NULL; if (root->val > key) { root->left = deleteNode(root->left, key); } else if (root->val < key) { root->right = deleteNode(root->right, key); } else { if (!root->left || !root->right) { root = (root->left) ? root->left : root->right; } else { TreeNode *cur = root->right; while (cur->left) cur = cur->left; root->val = cur->val; root->right = deleteNode(root->right, cur->val); } } return root; } };
C++:
class Solution { public: TreeNode* deleteNode(TreeNode* root, int key) { TreeNode *cur = root, *pre = NULL; while (cur) { if (cur->val == key) break; pre = cur; if (cur->val > key) cur = cur->left; else cur = cur->right; } if (!cur) return root; if (!pre) return del(cur); if (pre->left && pre->left->val == key) pre->left = del(cur); else pre->right = del(cur); return root; } TreeNode* del(TreeNode* node) { if (!node->left && !node->right) return NULL; if (!node->left || !node->right) { return (node->left) ? node->left : node->right; } TreeNode *pre = node, *cur = node->right; while (cur->left) { pre = cur; cur = cur->left; } node->val = cur->val; (pre == node ? node->right : pre->left) = cur->right; return node; } };
C++:
// Time: O(h) // Space: O(h) /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* deleteNode(TreeNode* root, int key) { if (!root) { return nullptr; } if (root->val > key) { root->left = deleteNode(root->left, key); } else if (root->val < key) { root->right = deleteNode(root->right, key); } else { if (!root->left) { auto right = root->right; delete root; return right; } else if (!root->right) { auto left = root->left; delete root; return left; } else { auto successor = root->right; while (successor->left) { successor = successor->left; } root->val = successor->val; root->right = deleteNode(root->right, successor->val); } } return root; } };