N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum number of swaps so that every couple is sitting side by side. A swap consists of choosing any two people, then they stand up and switch seats.
The people and seats are represented by an integer from 0
to 2N-1
, the couples are numbered in order, the first couple being (0, 1)
, the second couple being (2, 3)
, and so on with the last couple being (2N-2, 2N-1)
.
The couples' initial seating is given by row[i]
being the value of the person who is initially sitting in the i-th seat.
Example 1:
Input: row = [0, 2, 1, 3] Output: 1 Explanation: We only need to swap the second (row[1]) and third (row[2]) person.
Example 2:
Input: row = [3, 2, 0, 1] Output: 0 Explanation: All couples are already seated side by side.
Note:
len(row)
is even and in the range of[4, 60]
.row
is guaranteed to be a permutation of0...len(row)-1
.
有N个情侣和2N个座位,想让每一对情侣都能够牵手,也就是挨着坐。每次能交换任意两个人的座位,求最少需要换多少次座位。
解法1:cyclic swapping
解法2: Union Find
Java: 1
public int minSwapsCouples(int[] row) { int res = 0, N = row.length; int[] ptn = new int[N]; int[] pos = new int[N]; for (int i = 0; i < N; i++) { ptn[i] = (i % 2 == 0 ? i + 1 : i - 1); pos[row[i]] = i; } for (int i = 0; i < N; i++) { for (int j = ptn[pos[ptn[row[i]]]]; i != j; j = ptn[pos[ptn[row[i]]]]) { swap(row, i, j); swap(pos, row[i], row[j]); res++; } } return res; } private void swap(int[] arr, int i, int j) { int t = arr[i]; arr[i] = arr[j]; arr[j] = t; }
Java: 2
class Solution { private class UF { private int[] parents; public int count; UF(int n) { parents = new int[n]; for (int i = 0; i < n; i++) { parents[i] = i; } count = n; } private int find(int i) { if (parents[i] == i) { return i; } parents[i] = find(parents[i]); return parents[i]; } public void union(int i, int j) { int a = find(i); int b = find(j); if (a != b) { parents[a] = b; count--; } } } public int minSwapsCouples(int[] row) { int N = row.length/ 2; UF uf = new UF(N); for (int i = 0; i < N; i++) { int a = row[2*i]; int b = row[2*i + 1]; uf.union(a/2, b/2); } return N - uf.count; } }
Python:
# Time: O(n) # Space: O(n) class Solution(object): def minSwapsCouples(self, row): """ :type row: List[int] :rtype: int """ N = len(row)//2 couples = [[] for _ in xrange(N)] for seat, num in enumerate(row): couples[num//2].append(seat//2) adj = [[] for _ in xrange(N)] for couch1, couch2 in couples: adj[couch1].append(couch2) adj[couch2].append(couch1) result = 0 for couch in xrange(N): if not adj[couch]: continue couch1, couch2 = couch, adj[couch].pop() while couch2 != couch: result += 1 adj[couch2].remove(couch1) couch1, couch2 = couch2, adj[couch2].pop() return result # also equals to N - (# of cycles)
C++:
int minSwapsCouples(vector<int>& row) { int res = 0, N = row.size(); vector<int> ptn(N, 0); vector<int> pos(N, 0); for (int i = 0; i < N; i++) { ptn[i] = (i % 2 == 0 ? i + 1 : i - 1); pos[row[i]] = i; } for (int i = 0; i < N; i++) { for (int j = ptn[pos[ptn[row[i]]]]; i != j; j = ptn[pos[ptn[row[i]]]]) { swap(row[i], row[j]); swap(pos[row[i]], pos[row[j]]); res++; } } return res; }