zoukankan      html  css  js  c++  java
  • 修正单纯形法·优化算法实现·Java

    修正单纯性法




    代码例如以下:

    舍去了输入转化的内容,主要包括算法关键步骤。

    public class LPSimplexM {
    
    	private static final double inf = 1e9;
    	
    	private int n;							// 约束个数
    	private double[][] A;					// 输入函数參数
    	private double[] b;					// 约束值
    	private double[] c;					// 目标函数系数
    	private double Z;						// 目标值
    	private void InitF() {					// 初始化 First
    		/* problem 1.
    		 * max Z = 5*x1 + 4*x2;			  min Z = -5*x1 - 4*x2;
    		 * x1   + 3*x2 <= 90;				x1 + 3*x2 +  x3				= 90;
    		 * 2*x1 + x2   <= 80;		=>	  2*x1 +   x2 	    + x4		= 80;
    		 * x1   + x2   <= 45;				x1 +   x2   		  + x5 	= 45;
    		 * xi >= 0
    		 */
    		/* problem 2.
    		 * min Z = -7*x1 - 12*x2;
    		 * 9*x1 + 4*x2  + x3          = 360;		
    		 * 4*x1 + 5*x2       +x4 	  = 200;	  
    		 * 3*x1 + 10*x2			 + x5 = 300;
    		 *   xi >= 0
    		 */
    		n = 3;								
    		A = new double[n+1][n+1];
    		b = new double[n+1];
    //		c = new double[n<<1];
    		Z = inf;
    		// 约束初始条件
    		A[1][1] = 1;	A[1][2] = 3;
    		A[2][1] = 2;	A[2][2] = 1;
    		A[3][1] = 1;	A[3][2] = 1;
    		// 条件值
    		// problem 1.
    //		b[1] = 90;
    //		b[2] = 80;
    //		b[3] = 45;
    		// problem 2.
    		b[1] = 360;
    		b[2] = 200;
    		b[3] = 300;
    //		for(int i = 1; i <= n; i++)System.out.println("b[" + i + "] = " + b[i]);
    		// 目标函数系数
    //		c[1] = -5;	c[2] = -4;
    	}
    	
    	int m;
    	private double[][] p;
    	private double[][] e, oe;
    	private double[][] E, oE;
    	private double[] X;
    	private boolean[] G;
    	private int[] S;
    	private void InitS() {
    		m = 2;
    		p = new double[n+1][n+m+1];
    		e = new double[n+1][n+1];
    		oe = new double[n+1][n+1];
    		E = new double[n+1][n+1];
    		oE = new double[n+1][n+1];
    		X = new double[n+1];
    		G = new boolean[n+m+1];
    		S = new int[n+1];
    		
    		c = new double[n+m+1];
    		// problem 1.
    //		c[1] = -5;	c[2] = -4;	c[3] = 0;	c[4] = 0;	c[5] = 0;
    		// problem 2.
    		c[1] = -7;	c[2] = -12;	c[3] = 0;	c[4] = 0;	c[5] = 0;
    		// problem 1.
    //		p[1][1] = 1;	p[1][2] = 3;	p[1][3] = 1;	p[1][4] = 0;	p[1][5] = 0;
    //		p[2][1] = 2;	p[2][2] = 1;	p[2][3] = 0;	p[2][4] = 1;	p[2][5] = 0;
    //		p[3][1] = 1;	p[3][2] = 1;	p[3][3] = 0;	p[3][4] = 0;	p[3][5] = 1;
    		// problem 2.
    		p[1][1] = 9;	p[1][2] = 4;	p[1][3] = 1;	p[1][4] = 0;	p[1][5] = 0;
    		p[2][1] = 4;	p[2][2] = 5;	p[2][3] = 0;	p[2][4] = 1;	p[2][5] = 0;
    		p[3][1] = 3;	p[3][2] = 10;	p[3][3] = 0;	p[3][4] = 0;	p[3][5] = 1;
    	
    		for(int i = 1; i <= n; i++)
    			for(int j = 1; j <= n; j++)
    				if(i == j)E[i][j] = oE[i][j] = 1;
    				else E[i][j] = oE[i][j] = 0;
    		
    		for(int i = 1; i <= n; i++)
    			X[i] = b[i];
    		
    		G[1] = false;	G[2] = false;	G[3] = true;	G[4] = true;	G[5] = true;
    		
    		S[1] = 3;	S[2] = 4;	S[3] = 5;	
    	}
    	
    	
    	public LPSimplexM() {
    		InitF();
    		InitS();
    		AlgorithmProcess();
    		solve();
    	}
    	
    	private void AlgorithmProcess() {
    		double[] coE = new double[n+1];	// c * E^-1
    		double[] r = new double [n+m+1];	// c - c * E^-1 * p
    		double[] oEp = new double[n+1];	// E^-1 * p;
    		boolean flag = false;
    		while(true) {
    			// x = E^-1 * b
    			for(int i = 1; i <= n; i++){
    				X[i] = 0;
    				for(int j = 1; j <= n; j++)
    					X[i] += oE[i][j]*b[j];
    			}
    			// c * E^-1
    			for(int i = 1; i <= n; i++){
    				coE[i] = 0;
    				for(int j = 1; j <= n; j++)
    					coE[i] += c[S[j]]*oE[j][i];
    			}
    			// r = c - c * E^-1 * p     => min r' id -> k
    			int k = -1;
    			flag = false;
    			for(int i = 1; i <= n+m; i++)if(!G[i]){
    				double ans = 0;
    				for(int j = 1; j <= n; j++)
    					ans += coE[j]*p[j][i];
    				r[i] = c[i] - ans;
    				if(!flag && r[i] < 0){
    					k = i;
    					flag = true;
    				}else if(flag && r[i] < r[k]){
    					k = i;
    				}
    			}
    			if(k == -1)return ;									// solution output 1(X, S 为最优解)
    			// E^-1 * p;				=> min theta>0' id -> s
    			int s = -1;
    			flag = false;
    			for(int i = 1; i <= n; i++){
    				oEp[i] = 0;
    				for(int j = 1; j <= n; j++){
    					oEp[i] += oE[i][j]*p[j][k];
    				}
    				if(oEp[i] > 0){
    					if(!flag){
    						s = i;
    						flag = true;
    					}else if(flag && X[i]/oEp[i] < X[s]/oEp[s]){
    						s = i;
    					}
    				}
    			}
    			if(!flag)return ; 										// no solution 1(无同意解)
    			if(s == -1)return ;									// no solution 2(该问题有无解集)
    			// p[s] = p[k], 形成新的矢量基 E
    			G[S[s]] = false;	G[k] = true;
    			S[s] = k;
    //			System.out.println("k = " + k + "; s = " + s);
    			for(int i = 1; i <= n; i++){
    				p[i][k] = -1.0*oEp[i]/oEp[s];
    				if(i == s)
    					p[i][k] = 1/oEp[s];
    			}
    			for(int i = 1; i <= n; i++){
    				int id = S[i];
    				for(int j = 1; j <= n; j++){
    					if(i == s){
    						e[j][i] = p[j][k];
    					}else{
    						if(j == i){
    							e[j][i] = 1;
    						}else{
    							e[j][i] = 0;
    						}
    					}
    				}
    			}
    //			for(int i = 1; i <= n; i++){
    //				for(int j = 1; j <= n; j++){
    //					System.out.print(oE[i][j] + " ");
    //				}System.out.println();
    //			}System.out.println("{oE}");
    //			for(int i = 1; i <= n; i++){
    //				for(int j = 1; j <= n; j++){
    //					System.out.print(e[i][j] + " ");
    //				}System.out.println();
    //			}System.out.println("{e}");
    			for(int i = 1; i <= n; i++){
    				for(int j = 1; j <= n; j++){
    					oe[i][j] = 0;
    					for(int t = 1; t <= n; t++){
    						oe[i][j] += e[i][t]*oE[t][j];
    					}
    				}
    			}
    			for(int i = 1; i <= n; i++){
    				for(int j = 1; j <= n; j++){
    					oE[i][j] = oe[i][j];
    					//System.out.print(oE[i][j] + " ");
    				}//System.out.println();
    			}//System.out.println();
    		}
    	}
    	// 最优解输出
    	private void solve() {
    		Z = 0;
    		for(int i = 1; i <= n; i++){
    			int id = S[i];
    			Z += c[id]*X[i];
    			System.out.println(id + " : " + X[i] + " * " + -c[id]);
    		}
    		System.out.println("Z = " + -Z);
    	}
    	
    	public static void main(String[] args) {
    		new LPSimplexM();
    	}
    }
    如有问题,请网友指正。

    希望网友的交流,共同进步。


  • 相关阅读:
    10月1日学习日志
    RK987三模键盘使用说明书
    信封中装有10张奖券,只有一张有奖,从信封中每次抽取1张奖券后放回,如此重复抽取n次,中奖的概率为P,求P的表达式。
    SAP自动过账的概念
    SAP内部订单使用
    SAP凭证日期,过账日期的区别
    SAP增强
    金融财团控制全球经济的四种武器
    联想ZUI应用图标自动排序
    SAPFICO基础(1)
  • 原文地址:https://www.cnblogs.com/liguangsunls/p/6950556.html
Copyright © 2011-2022 走看看