zoukankan      html  css  js  c++  java
  • 斯特拉森矩阵乘法的实现

    网上关于斯特拉森矩阵的乘法,代码框架很多

    只是没有实现的代码块(有,但是就是不会运行)

    老师布置的了相关利用分治法来做的的题目

    想了很久,大概三天了(分治法大问题化小问题)是真没有完美的解决方法

    找到了个可以运行的java代码:java写的代码思路是真的清晰(粉java)

    package sort;
    
    /**
     * @Author liguo
     * @Description
     * @Data 2018-04-07 14:44
     */
    public class Sitelasen {
    
        public static void main(String[] args) {
            int[][] cc = {{1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1}};
            int[][] e = new Sitelasen().multiMatrix( cc, cc );
            for (int i = 0; i < e.length; i++) { 
                for (int j = 0; j < e.length; j++)
                    System.out.print( e[i][j] + " " );
                System.out.println();
            }
        }
    
        int[][] multiMatrix(int[][] x, int[][] y)//矩阵的乘法
        {
            Sitelasen matr = new Sitelasen();
            int a = x.length / 2;
            if (x.length == 2) {
                int m1 = (x[0][1] - x[1][1]) * (y[1][0] + y[1][1]),
                        m2 = (x[0][0] + x[1][1]) * (y[0][0] + y[0][1]),
                        m3 = (x[1][0] - x[0][0]) * (y[0][0] + y[0][1]),
                        m4 = (x[0][0] + x[0][1]) * y[1][1],
                        m5 = x[0][0] * (y[0][1] - y[1][1]),
                        m6 = x[1][1] * (y[1][0] - y[0][0]),
                        m7 = (x[1][0] + x[1][1]) * y[0][0];
                int[][] c = new int[2][2];
                c[0][0] = m1 + m2 + m6 - m4;
                c[0][1] = m4 + m5;
                c[1][0] = m6 + m7;
                c[1][1] = m2 + m3 + m5 - m7;
                return c;
            } else {
                int[][] a11 = new Sitelasen().sepaMatr( x, 0, 0 );
                int[][] a12 = new Sitelasen().sepaMatr( x, 0, a );
                int[][] a21 = new Sitelasen().sepaMatr( x, a, 0 );
                int[][] a22 = new Sitelasen().sepaMatr( x, a, a );
                int[][] b11 = new Sitelasen().sepaMatr( y, 0, 0 );
                int[][] b12 = new Sitelasen().sepaMatr( y, 0, a );
                int[][] b21 = new Sitelasen().sepaMatr( y, a, 0 );
                int[][] b22 = new Sitelasen().sepaMatr( y, a, a );
                int[][] m1 = matr.multiMatrix( matr.operaMatr( a11, a22, '-' ), matr.operaMatr( b21, b22, '+' ) ),
                        m2 = matr.multiMatrix( matr.operaMatr( a11, a22, '+' ), matr.operaMatr( b11, b22, '+' ) ),
                        m3 = matr.multiMatrix( matr.operaMatr( a21, a11, '-' ), matr.operaMatr( b11, b12, '+' ) ),
                        m4 = matr.multiMatrix( matr.operaMatr( a12, a11, '+' ), b22 ),
                        m5 = matr.multiMatrix( a11, matr.operaMatr( b12, b22, '-' ) ),
                        m6 = matr.multiMatrix( a22, matr.operaMatr( b21, b11, '-' ) ),
                        m7 = matr.multiMatrix( matr.operaMatr( a21, a22, '+' ), b11 );
                int[][] c11 = matr.operaMatr( matr.operaMatr( m6, m4, '-' ), matr.operaMatr( m1, m2, '+' ), '+' );
                int[][] c12 = matr.operaMatr( m4, m5, '+' );
                int[][] c21 = matr.operaMatr( m6, m7, '+' );
                int[][] c22 = matr.operaMatr( matr.operaMatr( m2, m3, '+' ), matr.operaMatr( m5, m7, '-' ), '+' );
                return matr.mergMatr( c11, c12, c21, c22 );
    
            }
        }
    
        int[][] mergMatr(int[][] x11, int[][] x12, int[][] x21, int[][] x22)//和并矩阵,将c11,c12,c21,c22合并成一个矩阵
        {
            int[][] a = new int[2 * x11.length][2 * x11.length];
            for (int i = 0; i < x11.length; i++)
                for (int j = 0; j < x11.length; j++) {
                    a[i][j] = x11[i][j];
                }
            for (int i = 0; i < x11.length; i++)
                for (int j = 0; j < x11.length; j++) {
                    a[i][j + x11.length] = x12[i][j];
                }
            for (int i = 0; i < x11.length; i++)
                for (int j = 0; j < x11.length; j++) {
                    a[i + x11.length][j] = x21[i][j];
                }
            for (int i = 0; i < x11.length; i++)
                for (int j = 0; j < x11.length; j++) {
                    a[i + x11.length][j + x11.length] = x22[i][j];
                }
            return a;
        }
    
        int[][] sepaMatr(int[][] x, int m, int n)//分解矩阵成矩阵块
        {
            int[][] a = new int[x.length / 2][x.length / 2];
            for (int i = 0; i < a.length; i++)
                for (int j = 0; j < a.length; j++) {
                    a[i][j] = x[m + i][n + j];
                }
            return a;
        }
    
        int[][] operaMatr(int[][] x, int[][] y, char f)//矩阵的加减
        {
            if (f == '+') {
                int[][] a = new int[x.length][x.length];
                for (int i = 0; i < x.length; i++)
                    for (int j = 0; j < x.length; j++)
                        a[i][j] = x[i][j] + y[i][j];
                return a;
            } else if (f == '-') {
                int[][] a = new int[x.length][x.length];
                for (int i = 0; i < x.length; i++)
                    for (int j = 0; j < x.length; j++)
                        a[i][j] = x[i][j] - y[i][j];
                return a;
            } else {
                System.out.println( "error" );
                int[][] a = new int[1][1];
                return a;
            }
        }
    
    }
     
    View Code

     同时也有了一个可以跑起来的c++实现:

    #include<iostream>
    
    #include<math.h>
    
    #include<fstream>
    
    using namespace std;
    
    ifstream infile("123.txt",ios::in);
    
    void Input(int n,int **A)
    
    {
    
        //infile>>n;
    
        for(int i=0;i<n;i++)
    
        for(int j=0;j<n;j++)
    
        infile>>A[i][j];
    
    }
    
    void Output(int n,int **A)
    
    {
    
        for(int i=0;i<n;i++)
    
    {
    
        for(int j=0;j<n;j++)
    
        cout<<A[i][j]<<'	';
    
        cout<<endl;
    
    }
    
    cout<<endl;
    
     
    
    }
    
    void Divide(int n,int **A,int **A11,int **A12,int **A21,int **A22)
    
    {
    
        int i,j;
    
        for(i=0;i<n;i++)
    
        for(j=0;j<n;j++)
    
        {
    
            A11[i][j]=A[i][j];
    
            A12[i][j]=A[i][j+n];
    
            A21[i][j]=A[i+n][j];
    
            A22[i][j]=A[i+n][j+n];
    
        }
    
     
    
    }
    
    void Unit(int n,int **A,int **A11,int **A12,int **A21,int **A22)
    
    {
    
        int i,j;
    
        for(i=0;i<n;i++)
    
        for(j=0;j<n;j++)
    
        {
    
            A[i][j]=A11[i][j];
    
            A[i][j+n]=A12[i][j];
    
            A[i+n][j]=A21[i][j];
    
            A[i+n][j+n]=A22[i][j];
    
        }
    
    }
    
    void Sub(int n,int **A,int **B,int **C)
    
    {
    
        int i,j;
    
        for(i=0;i<n;i++)
    
        for(j=0;j<n;j++)
    
        C[i][j]=A[i][j]-B[i][j];
    
    }
    
    void Add(int n,int **A,int **B,int **C)
    
    {
    
        int i,j;
    
        for(i=0;i<n;i++)
    
        for(j=0;j<n;j++)
    
        C[i][j]=A[i][j]+B[i][j];
    
    }
    
    void Mul(int n,int **A,int **B,int **M)
    
    {
    
        if(n==1)
    
        M[0][0]=A[0][0]*B[0][0];
    
        else
    
        {
    
        n=n/2;
    
        int **A11,**A12,**A21,**A22;
    
        int **B11,**B12,**B21,**B22;
    
        int **M11,**M12,**M21,**M22;
    
        int **M1,**M2,**M3,**M4,**M5,**M6,**M7;
    
        int **T1,**T2;
    
        A11=new int*[n];
    
        A12=new int*[n];
    
        A21=new int*[n];
    
        A22=new int*[n];
    
     
    
        B11=new int*[n];
    
        B12=new int*[n];
    
        B21=new int*[n];
    
        B22=new int*[n];
    
     
    
            M11=new int*[n];
    
            M12=new int*[n];
    
            M21=new int*[n];
    
            M22=new int*[n];
    
     
    
        M1=new int*[n];
    
        M2=new int*[n];
    
        M3=new int*[n];
    
        M4=new int*[n];
    
        M5=new int*[n];
    
        M6=new int*[n];
    
        M7=new int*[n];
    
     
    
        T1=new int*[n];
    
        T2=new int*[n];
    
     
    
            int i;
    
        for(i=0;i<n;i++)
    
        {
    
            A11[i]=new int[n];
    
            A12[i]=new int[n];
    
            A21[i]=new int[n];
    
            A22[i]=new int[n];
    
            B11[i]=new int[n];
    
            B12[i]=new int[n];
    
            B21[i]=new int[n];
    
            B22[i]=new int[n];
    
            M11[i]=new int[n];
    
            M12[i]=new int[n];
    
            M21[i]=new int[n];
    
            M22[i]=new int[n];
    
            M1[i]=new int[n];
    
            M2[i]=new int[n];
    
            M3[i]=new int[n];
    
            M4[i]=new int[n];
    
            M5[i]=new int[n];
    
            M6[i]=new int[n];
    
            M7[i]=new int[n];
    
     
    
            T1[i]=new int[n];
    
            T2[i]=new int[n];
    
     
    
        }
    
        Divide(n,A,A11,A12,A21,A22);
    
        Divide(n,B,B11,B12,B21,B22);
    
       // cout<<"A11,A12,A21,A22"<<endl;
    
       // Output(n,A11);Output(n,A12);Output(n,A21);Output(n,A22);
    
            Sub(n,B12,B22,T1);
    
         //   cout<<"B12-B22"<<endl;
    
          //  Output(n,T1);
    
            Mul(n,A11,T1,M1);
    
     
    
            Add(n,A11,A12,T2);
    
            Mul(n,T2,B22,M2);
    
     
    
            Add(n,A21,A22,T1);
    
            Mul(n,T1,B11,M3);
    
     
    
            Sub(n,B21,B11,T1);
    
            Mul(n,A22,T1,M4);
    
     
    
            Add(n,A11,A22,T1);
    
            Add(n,B11,B22,T2);
    
            Mul(n,T1,T2,M5);
    
     
    
            Sub(n,A12,A22,T1);
    
            Add(n,B21,B22,T2);
    
            Mul(n,T1,T2,M6);
    
     
    
            Sub(n,A11,A21,T1);
    
            Add(n,B11,B12,T2);
    
            Mul(n,T1,T2,M7);
    
     
    
     
    
            Add(n,M5,M4,T1);
    
            Sub(n,T1,M2,T2);
    
            Add(n,T2,M6,M11);
    
     
    
            Add(n,M1,M2,M12);
    
     
    
            Add(n,M3,M4,M21);
    
     
    
            Add(n,M5,M1,T1);
    
            Sub(n,T1,M3,T2);
    
            Sub(n,T2,M7,M22);
    
     
    
            Unit(n,M,M11,M12,M21,M22);
    
     
    
     
    
     
    
        }
    
    }
    
     
    
    int main()
    
    {
    
        int n;
    
        cout<<"please input number n"<<endl;
    
        cin>>n;
    
        int **A,**B,**C;
    
        A=new int*[n];
    
        B=new int*[n];
    
        C=new int*[n];
    
        for(int i=0;i<n;i++)
    
        {
    
            A[i]=new int[n];
    
            B[i]=new int[n];
    
            C[i]=new int[n];
    
        }
    
        Input(n,A);
    
        cout<<"A Matrix is"<<endl;
    
        Output(n,A);
    
        Input(n,B);
    
        cout<<"B Matrix is"<<endl;
    
        Output(n,B);
    
        Input(n,C);
    
        //Output(n,C);
    
        Mul(n,A,B,C);
    
        cout<<"The Product of A and B is"<<endl;
    
        Output(n,C);
    
       // cout<<n<<endl;
    
        infile.close();
    
        return 0;
    
    }
    View Code

    //就编程实来讲,以后我再也不会花费大量时间来训练类似的题目了

    实现是一方面,更多的是你在历尽很多bug后,还是没有做出来能够跑起来的程序就很无奈

    //本来自己还想做任意阶矩阵乘法的,实现不了,就降低了难度,想着做n*n阶矩阵,到最后只想做出来二的整数次幂阶的斯特拉森矩阵乘法。

  • 相关阅读:
    实验一 开发环境的熟悉 20165311
    2018-2019-2 20165307《网络对抗技术》Exp9 Web安全基础
    2018-2019-2 网络对抗技术 20165307 Exp 8 Web基础
    2018-2019-2 网络对抗技术 20165307 Exp7 网络欺诈防范
    2018-2019-2 20165307网络对抗技术 Exp6:信息收集与漏洞扫描
    2018-2019-2 20165307《网络对抗技术》Exp5 MSF基础应用
    2018-2019-2 网络对抗技术 20165307 Exp4 恶意代码分析
    2018-2019-2 网络对抗技术 20165307 Exp3 免杀原理与实践
    2018-2019-2 20165307《网络对抗技术》Exp2 后门原理与实践
    20165307《网络对抗技术》Exp1 PC平台逆向破解
  • 原文地址:https://www.cnblogs.com/liguo-wang/p/8757742.html
Copyright © 2011-2022 走看看