zoukankan      html  css  js  c++  java
  • Machine Learning 之怎样完成矩阵的参数求导.

    感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30678.html

    函数f(x)关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    函数f(x)关于向量X^T的梯度

    机器学习之如何完成矩阵的参数求导?

    m维行向量函数f(x)=(f1(x),...,fm(x))关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    f(A)关于m*n矩阵A的的梯度

    机器学习之如何完成矩阵的参数求导?

    对向量的偏导数

    机器学习之如何完成矩阵的参数求导?

    XTAy可以看成内积<x,Ay>,那么对x求偏导就是Ay

    机器学习之如何完成矩阵的参数求导?

    yTAx可以看成内积<y,Ax>,进而可以变为<ATy,x>,所以对x求偏导就是A^Ty

    机器学习之如何完成矩阵的参数求导?

    XTAX可以堪称内积<x,Ax>,由于两个边都有,当对左边求偏导结果是Ax,此时变为<ATx,x>继续对右边求偏导结果就是ATx,那么两个接起来就是Ax+ATx

    迹函数的梯度矩阵

    对于一个n阶方阵A的迹被定义为方阵A的主对角线的元素之和,通常对方阵的求迹操作写成trA,于是我们有

    机器学习之如何完成矩阵的参数求导?

    常用的矩阵迹的微分

    机器学习之如何完成矩阵的参数求导?

    常用的迹函数的梯度矩阵举例:

    机器学习之如何完成矩阵的参数求导?

    如上所示迹是对角线上的元素和,所以对A求偏导,此时矩阵A的非对角线上的元素为0,对角线上的元素为1

    机器学习之如何完成矩阵的参数求导?

    如上所示迹AB对A求偏导数,对Apl的结果为Blp,那么也就是B矩阵的转置了感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30678.html

    函数f(x)关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    函数f(x)关于向量X^T的梯度

    机器学习之如何完成矩阵的参数求导?

    m维行向量函数f(x)=(f1(x),...,fm(x))关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    f(A)关于m*n矩阵A的的梯度

    机器学习之如何完成矩阵的参数求导?

    对向量的偏导数

    机器学习之如何完成矩阵的参数求导?

    XTAy可以看成内积<x,Ay>,那么对x求偏导就是Ay

    机器学习之如何完成矩阵的参数求导?

    yTAx可以看成内积<y,Ax>,进而可以变为<ATy,x>,所以对x求偏导就是A^Ty

    机器学习之如何完成矩阵的参数求导?

    XTAX可以堪称内积<x,Ax>,由于两个边都有,当对左边求偏导结果是Ax,此时变为<ATx,x>继续对右边求偏导结果就是ATx,那么两个接起来就是Ax+ATx

    迹函数的梯度矩阵

    对于一个n阶方阵A的迹被定义为方阵A的主对角线的元素之和,通常对方阵的求迹操作写成trA,于是我们有

    机器学习之如何完成矩阵的参数求导?

    常用的矩阵迹的微分

    机器学习之如何完成矩阵的参数求导?

    常用的迹函数的梯度矩阵举例:

    机器学习之如何完成矩阵的参数求导?

    如上所示迹是对角线上的元素和,所以对A求偏导,此时矩阵A的非对角线上的元素为0,对角线上的元素为1

    机器学习之如何完成矩阵的参数求导?

    如上所示迹AB对A求偏导数,对Apl的结果为Blp,那么也就是B矩阵的转置了感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30678.html

    函数f(x)关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    函数f(x)关于向量X^T的梯度

    机器学习之如何完成矩阵的参数求导?

    m维行向量函数f(x)=(f1(x),...,fm(x))关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    f(A)关于m*n矩阵A的的梯度

    机器学习之如何完成矩阵的参数求导?

    对向量的偏导数

    机器学习之如何完成矩阵的参数求导?

    XTAy可以看成内积<x,Ay>,那么对x求偏导就是Ay

    机器学习之如何完成矩阵的参数求导?

    yTAx可以看成内积<y,Ax>,进而可以变为<ATy,x>,所以对x求偏导就是A^Ty

    机器学习之如何完成矩阵的参数求导?

    XTAX可以堪称内积<x,Ax>,由于两个边都有,当对左边求偏导结果是Ax,此时变为<ATx,x>继续对右边求偏导结果就是ATx,那么两个接起来就是Ax+ATx

    迹函数的梯度矩阵

    对于一个n阶方阵A的迹被定义为方阵A的主对角线的元素之和,通常对方阵的求迹操作写成trA,于是我们有

    机器学习之如何完成矩阵的参数求导?

    常用的矩阵迹的微分

    机器学习之如何完成矩阵的参数求导?

    常用的迹函数的梯度矩阵举例:

    机器学习之如何完成矩阵的参数求导?

    如上所示迹是对角线上的元素和,所以对A求偏导,此时矩阵A的非对角线上的元素为0,对角线上的元素为1

    机器学习之如何完成矩阵的参数求导?

    如上所示迹AB对A求偏导数,对Apl的结果为Blp,那么也就是B矩阵的转置了感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30678.html

    函数f(x)关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    函数f(x)关于向量X^T的梯度

    机器学习之如何完成矩阵的参数求导?

    m维行向量函数f(x)=(f1(x),...,fm(x))关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    f(A)关于m*n矩阵A的的梯度

    机器学习之如何完成矩阵的参数求导?

    对向量的偏导数

    机器学习之如何完成矩阵的参数求导?

    XTAy可以看成内积<x,Ay>,那么对x求偏导就是Ay

    机器学习之如何完成矩阵的参数求导?

    yTAx可以看成内积<y,Ax>,进而可以变为<ATy,x>,所以对x求偏导就是A^Ty

    机器学习之如何完成矩阵的参数求导?

    XTAX可以堪称内积<x,Ax>,由于两个边都有,当对左边求偏导结果是Ax,此时变为<ATx,x>继续对右边求偏导结果就是ATx,那么两个接起来就是Ax+ATx

    迹函数的梯度矩阵

    对于一个n阶方阵A的迹被定义为方阵A的主对角线的元素之和,通常对方阵的求迹操作写成trA,于是我们有

    机器学习之如何完成矩阵的参数求导?

    常用的矩阵迹的微分

    机器学习之如何完成矩阵的参数求导?

    常用的迹函数的梯度矩阵举例:

    机器学习之如何完成矩阵的参数求导?

    如上所示迹是对角线上的元素和,所以对A求偏导,此时矩阵A的非对角线上的元素为0,对角线上的元素为1

    机器学习之如何完成矩阵的参数求导?

    如上所示迹AB对A求偏导数,对Apl的结果为Blp,那么也就是B矩阵的转置了感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30678.html

    函数f(x)关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    函数f(x)关于向量X^T的梯度

    机器学习之如何完成矩阵的参数求导?

    m维行向量函数f(x)=(f1(x),...,fm(x))关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    f(A)关于m*n矩阵A的的梯度

    机器学习之如何完成矩阵的参数求导?

    对向量的偏导数

    机器学习之如何完成矩阵的参数求导?

    XTAy可以看成内积<x,Ay>,那么对x求偏导就是Ay

    机器学习之如何完成矩阵的参数求导?

    yTAx可以看成内积<y,Ax>,进而可以变为<ATy,x>,所以对x求偏导就是A^Ty

    机器学习之如何完成矩阵的参数求导?

    XTAX可以堪称内积<x,Ax>,由于两个边都有,当对左边求偏导结果是Ax,此时变为<ATx,x>继续对右边求偏导结果就是ATx,那么两个接起来就是Ax+ATx

    迹函数的梯度矩阵

    对于一个n阶方阵A的迹被定义为方阵A的主对角线的元素之和,通常对方阵的求迹操作写成trA,于是我们有

    机器学习之如何完成矩阵的参数求导?

    常用的矩阵迹的微分

    机器学习之如何完成矩阵的参数求导?

    常用的迹函数的梯度矩阵举例:

    机器学习之如何完成矩阵的参数求导?

    如上所示迹是对角线上的元素和,所以对A求偏导,此时矩阵A的非对角线上的元素为0,对角线上的元素为1

    机器学习之如何完成矩阵的参数求导?

    如上所示迹AB对A求偏导数,对Apl的结果为Blp,那么也就是B矩阵的转置了感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30678.html

    函数f(x)关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    函数f(x)关于向量X^T的梯度

    机器学习之如何完成矩阵的参数求导?

    m维行向量函数f(x)=(f1(x),...,fm(x))关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    f(A)关于m*n矩阵A的的梯度

    机器学习之如何完成矩阵的参数求导?

    对向量的偏导数

    机器学习之如何完成矩阵的参数求导?

    XTAy可以看成内积<x,Ay>,那么对x求偏导就是Ay

    机器学习之如何完成矩阵的参数求导?

    yTAx可以看成内积<y,Ax>,进而可以变为<ATy,x>,所以对x求偏导就是A^Ty

    机器学习之如何完成矩阵的参数求导?

    XTAX可以堪称内积<x,Ax>,由于两个边都有,当对左边求偏导结果是Ax,此时变为<ATx,x>继续对右边求偏导结果就是ATx,那么两个接起来就是Ax+ATx

    迹函数的梯度矩阵

    对于一个n阶方阵A的迹被定义为方阵A的主对角线的元素之和,通常对方阵的求迹操作写成trA,于是我们有

    机器学习之如何完成矩阵的参数求导?

    常用的矩阵迹的微分

    机器学习之如何完成矩阵的参数求导?

    常用的迹函数的梯度矩阵举例:

    机器学习之如何完成矩阵的参数求导?

    如上所示迹是对角线上的元素和,所以对A求偏导,此时矩阵A的非对角线上的元素为0,对角线上的元素为1

    机器学习之如何完成矩阵的参数求导?

    如上所示迹AB对A求偏导数,对Apl的结果为Blp,那么也就是B矩阵的转置了感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30678.html

    函数f(x)关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    函数f(x)关于向量X^T的梯度

    机器学习之如何完成矩阵的参数求导?

    m维行向量函数f(x)=(f1(x),...,fm(x))关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    f(A)关于m*n矩阵A的的梯度

    机器学习之如何完成矩阵的参数求导?

    对向量的偏导数

    机器学习之如何完成矩阵的参数求导?

    XTAy可以看成内积<x,Ay>,那么对x求偏导就是Ay

    机器学习之如何完成矩阵的参数求导?

    yTAx可以看成内积<y,Ax>,进而可以变为<ATy,x>,所以对x求偏导就是A^Ty

    机器学习之如何完成矩阵的参数求导?

    XTAX可以堪称内积<x,Ax>,由于两个边都有,当对左边求偏导结果是Ax,此时变为<ATx,x>继续对右边求偏导结果就是ATx,那么两个接起来就是Ax+ATx

    迹函数的梯度矩阵

    对于一个n阶方阵A的迹被定义为方阵A的主对角线的元素之和,通常对方阵的求迹操作写成trA,于是我们有

    机器学习之如何完成矩阵的参数求导?

    常用的矩阵迹的微分

    机器学习之如何完成矩阵的参数求导?

    常用的迹函数的梯度矩阵举例:

    机器学习之如何完成矩阵的参数求导?

    如上所示迹是对角线上的元素和,所以对A求偏导,此时矩阵A的非对角线上的元素为0,对角线上的元素为1

    机器学习之如何完成矩阵的参数求导?

    如上所示迹AB对A求偏导数,对Apl的结果为Blp,那么也就是B矩阵的转置了感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30678.html

    函数f(x)关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    函数f(x)关于向量X^T的梯度

    机器学习之如何完成矩阵的参数求导?

    m维行向量函数f(x)=(f1(x),...,fm(x))关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    f(A)关于m*n矩阵A的的梯度

    机器学习之如何完成矩阵的参数求导?

    对向量的偏导数

    机器学习之如何完成矩阵的参数求导?

    XTAy可以看成内积<x,Ay>,那么对x求偏导就是Ay

    机器学习之如何完成矩阵的参数求导?

    yTAx可以看成内积<y,Ax>,进而可以变为<ATy,x>,所以对x求偏导就是A^Ty

    机器学习之如何完成矩阵的参数求导?

    XTAX可以堪称内积<x,Ax>,由于两个边都有,当对左边求偏导结果是Ax,此时变为<ATx,x>继续对右边求偏导结果就是ATx,那么两个接起来就是Ax+ATx

    迹函数的梯度矩阵

    对于一个n阶方阵A的迹被定义为方阵A的主对角线的元素之和,通常对方阵的求迹操作写成trA,于是我们有

    机器学习之如何完成矩阵的参数求导?

    常用的矩阵迹的微分

    机器学习之如何完成矩阵的参数求导?

    常用的迹函数的梯度矩阵举例:

    机器学习之如何完成矩阵的参数求导?

    如上所示迹是对角线上的元素和,所以对A求偏导,此时矩阵A的非对角线上的元素为0,对角线上的元素为1

    机器学习之如何完成矩阵的参数求导?

    如上所示迹AB对A求偏导数,对Apl的结果为Blp,那么也就是B矩阵的转置了感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30678.html

    函数f(x)关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    函数f(x)关于向量X^T的梯度

    机器学习之如何完成矩阵的参数求导?

    m维行向量函数f(x)=(f1(x),...,fm(x))关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    f(A)关于m*n矩阵A的的梯度

    机器学习之如何完成矩阵的参数求导?

    对向量的偏导数

    机器学习之如何完成矩阵的参数求导?

    XTAy可以看成内积<x,Ay>,那么对x求偏导就是Ay

    机器学习之如何完成矩阵的参数求导?

    yTAx可以看成内积<y,Ax>,进而可以变为<ATy,x>,所以对x求偏导就是A^Ty

    机器学习之如何完成矩阵的参数求导?

    XTAX可以堪称内积<x,Ax>,由于两个边都有,当对左边求偏导结果是Ax,此时变为<ATx,x>继续对右边求偏导结果就是ATx,那么两个接起来就是Ax+ATx

    迹函数的梯度矩阵

    对于一个n阶方阵A的迹被定义为方阵A的主对角线的元素之和,通常对方阵的求迹操作写成trA,于是我们有

    机器学习之如何完成矩阵的参数求导?

    常用的矩阵迹的微分

    机器学习之如何完成矩阵的参数求导?

    常用的迹函数的梯度矩阵举例:

    机器学习之如何完成矩阵的参数求导?

    如上所示迹是对角线上的元素和,所以对A求偏导,此时矩阵A的非对角线上的元素为0,对角线上的元素为1

    机器学习之如何完成矩阵的参数求导?

    如上所示迹AB对A求偏导数,对Apl的结果为Blp,那么也就是B矩阵的转置了感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30678.html

    函数f(x)关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    函数f(x)关于向量X^T的梯度

    机器学习之如何完成矩阵的参数求导?

    m维行向量函数f(x)=(f1(x),...,fm(x))关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    f(A)关于m*n矩阵A的的梯度

    机器学习之如何完成矩阵的参数求导?

    对向量的偏导数

    机器学习之如何完成矩阵的参数求导?

    XTAy可以看成内积<x,Ay>,那么对x求偏导就是Ay

    机器学习之如何完成矩阵的参数求导?

    yTAx可以看成内积<y,Ax>,进而可以变为<ATy,x>,所以对x求偏导就是A^Ty

    机器学习之如何完成矩阵的参数求导?

    XTAX可以堪称内积<x,Ax>,由于两个边都有,当对左边求偏导结果是Ax,此时变为<ATx,x>继续对右边求偏导结果就是ATx,那么两个接起来就是Ax+ATx

    迹函数的梯度矩阵

    对于一个n阶方阵A的迹被定义为方阵A的主对角线的元素之和,通常对方阵的求迹操作写成trA,于是我们有

    机器学习之如何完成矩阵的参数求导?

    常用的矩阵迹的微分

    机器学习之如何完成矩阵的参数求导?

    常用的迹函数的梯度矩阵举例:

    机器学习之如何完成矩阵的参数求导?

    如上所示迹是对角线上的元素和,所以对A求偏导,此时矩阵A的非对角线上的元素为0,对角线上的元素为1

    机器学习之如何完成矩阵的参数求导?

    如上所示迹AB对A求偏导数,对Apl的结果为Blp,那么也就是B矩阵的转置了感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30678.html

    函数f(x)关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    函数f(x)关于向量X^T的梯度

    机器学习之如何完成矩阵的参数求导?

    m维行向量函数f(x)=(f1(x),...,fm(x))关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    f(A)关于m*n矩阵A的的梯度

    机器学习之如何完成矩阵的参数求导?

    对向量的偏导数

    机器学习之如何完成矩阵的参数求导?

    XTAy可以看成内积<x,Ay>,那么对x求偏导就是Ay

    机器学习之如何完成矩阵的参数求导?

    yTAx可以看成内积<y,Ax>,进而可以变为<ATy,x>,所以对x求偏导就是A^Ty

    机器学习之如何完成矩阵的参数求导?

    XTAX可以堪称内积<x,Ax>,由于两个边都有,当对左边求偏导结果是Ax,此时变为<ATx,x>继续对右边求偏导结果就是ATx,那么两个接起来就是Ax+ATx

    迹函数的梯度矩阵

    对于一个n阶方阵A的迹被定义为方阵A的主对角线的元素之和,通常对方阵的求迹操作写成trA,于是我们有

    机器学习之如何完成矩阵的参数求导?

    常用的矩阵迹的微分

    机器学习之如何完成矩阵的参数求导?

    常用的迹函数的梯度矩阵举例:

    机器学习之如何完成矩阵的参数求导?

    如上所示迹是对角线上的元素和,所以对A求偏导,此时矩阵A的非对角线上的元素为0,对角线上的元素为1

    机器学习之如何完成矩阵的参数求导?

    如上所示迹AB对A求偏导数,对Apl的结果为Blp,那么也就是B矩阵的转置了感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30678.html

    函数f(x)关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    函数f(x)关于向量X^T的梯度

    机器学习之如何完成矩阵的参数求导?

    m维行向量函数f(x)=(f1(x),...,fm(x))关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    f(A)关于m*n矩阵A的的梯度

    机器学习之如何完成矩阵的参数求导?

    对向量的偏导数

    机器学习之如何完成矩阵的参数求导?

    XTAy可以看成内积<x,Ay>,那么对x求偏导就是Ay

    机器学习之如何完成矩阵的参数求导?

    yTAx可以看成内积<y,Ax>,进而可以变为<ATy,x>,所以对x求偏导就是A^Ty

    机器学习之如何完成矩阵的参数求导?

    XTAX可以堪称内积<x,Ax>,由于两个边都有,当对左边求偏导结果是Ax,此时变为<ATx,x>继续对右边求偏导结果就是ATx,那么两个接起来就是Ax+ATx

    迹函数的梯度矩阵

    对于一个n阶方阵A的迹被定义为方阵A的主对角线的元素之和,通常对方阵的求迹操作写成trA,于是我们有

    机器学习之如何完成矩阵的参数求导?

    常用的矩阵迹的微分

    机器学习之如何完成矩阵的参数求导?

    常用的迹函数的梯度矩阵举例:

    机器学习之如何完成矩阵的参数求导?

    如上所示迹是对角线上的元素和,所以对A求偏导,此时矩阵A的非对角线上的元素为0,对角线上的元素为1

    机器学习之如何完成矩阵的参数求导?

    如上所示迹AB对A求偏导数,对Apl的结果为Blp,那么也就是B矩阵的转置了感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30678.html

    函数f(x)关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    函数f(x)关于向量X^T的梯度

    机器学习之如何完成矩阵的参数求导?

    m维行向量函数f(x)=(f1(x),...,fm(x))关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    f(A)关于m*n矩阵A的的梯度

    机器学习之如何完成矩阵的参数求导?

    对向量的偏导数

    机器学习之如何完成矩阵的参数求导?

    XTAy可以看成内积<x,Ay>,那么对x求偏导就是Ay

    机器学习之如何完成矩阵的参数求导?

    yTAx可以看成内积<y,Ax>,进而可以变为<ATy,x>,所以对x求偏导就是A^Ty

    机器学习之如何完成矩阵的参数求导?

    XTAX可以堪称内积<x,Ax>,由于两个边都有,当对左边求偏导结果是Ax,此时变为<ATx,x>继续对右边求偏导结果就是ATx,那么两个接起来就是Ax+ATx

    迹函数的梯度矩阵

    对于一个n阶方阵A的迹被定义为方阵A的主对角线的元素之和,通常对方阵的求迹操作写成trA,于是我们有

    机器学习之如何完成矩阵的参数求导?

    常用的矩阵迹的微分

    机器学习之如何完成矩阵的参数求导?

    常用的迹函数的梯度矩阵举例:

    机器学习之如何完成矩阵的参数求导?

    如上所示迹是对角线上的元素和,所以对A求偏导,此时矩阵A的非对角线上的元素为0,对角线上的元素为1

    机器学习之如何完成矩阵的参数求导?

    如上所示迹AB对A求偏导数,对Apl的结果为Blp,那么也就是B矩阵的转置了感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30678.html

    函数f(x)关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    函数f(x)关于向量X^T的梯度

    机器学习之如何完成矩阵的参数求导?

    m维行向量函数f(x)=(f1(x),...,fm(x))关于向量x的梯度

    机器学习之如何完成矩阵的参数求导?

    f(A)关于m*n矩阵A的的梯度

    机器学习之如何完成矩阵的参数求导?

    对向量的偏导数

    机器学习之如何完成矩阵的参数求导?

    XTAy可以看成内积<x,Ay>,那么对x求偏导就是Ay

    机器学习之如何完成矩阵的参数求导?

    yTAx可以看成内积<y,Ax>,进而可以变为<ATy,x>,所以对x求偏导就是A^Ty

    机器学习之如何完成矩阵的参数求导?

    XTAX可以堪称内积<x,Ax>,由于两个边都有,当对左边求偏导结果是Ax,此时变为<ATx,x>继续对右边求偏导结果就是ATx,那么两个接起来就是Ax+ATx

    迹函数的梯度矩阵

    对于一个n阶方阵A的迹被定义为方阵A的主对角线的元素之和,通常对方阵的求迹操作写成trA,于是我们有

    机器学习之如何完成矩阵的参数求导?

    常用的矩阵迹的微分

    机器学习之如何完成矩阵的参数求导?

    常用的迹函数的梯度矩阵举例:

    机器学习之如何完成矩阵的参数求导?

    如上所示迹是对角线上的元素和,所以对A求偏导,此时矩阵A的非对角线上的元素为0,对角线上的元素为1

    机器学习之如何完成矩阵的参数求导?

    如上所示迹AB对A求偏导数,对Apl的结果为Blp,那么也就是B矩阵的转置了

  • 相关阅读:
    Java实现网易163邮箱好友通讯录的解析功能(带源码)
    wordpress优化第四招 修改评论模板,留住客户,让评论在新的页面打开。
    wordpress优化 使用SAE提供的jquery.js替代wordpress原生的
    出售wordpress的淘宝客主题一套
    做了一个可以生成在线mp3 flash播放器的网站
    wordpress优化第三招 开启gzip减少网页流量
    20多个常用的免费WebService接口
    wordpress优化第一招 压缩css和js减少流量提高博客速度(尤其适用SAE)
    Linux学习笔记10常用操作命令(useradd命令、passwd 命令)
    Linux学习笔记08linux文本处理(cat命令、more命令、head命令、tail命令)
  • 原文地址:https://www.cnblogs.com/lihanlin/p/12657747.html
Copyright © 2011-2022 走看看