zoukankan      html  css  js  c++  java
  • 最短路径算法实现

    最短路径算法

    1、Dijkstra算法

    目的是求解固定起点分别到其余各点的最短路径

    步骤如下:

    1. 准备工作:构建二位矩阵edge,edge[i][j]存储i->j的权重,如果i==j则edge[i][j]=0,如果i和j不是直达的,则edge[i][j]=MAX_INT
    2. 构建数组dis[],其中dis[i]表示其实点start->i之间的权重,不断更新,得到最小的权重
    3. 选取离start最近的直达点,(注,非直达的点一定会经过中间的跳变点,间接到达,首先考虑的一定是经过离start最近的点进行跳变)
    4. 判断dis[i]与dis[离start最近的点index]+edge[离start最近的点index][i]的大小,更新dis[i]
    5. 重复3-4(注意标记,防止重复计算)
    #include <iostream>
    
    using namespace std;
    
    const int max_int = ~(1<<31);
    const int min_int = (1<<31);
    
    int main(){
        int n,m,s;//n is the number of nodes, m is the number of edges and s is the start node.
        int t1,t2,t3;//t1 is the start node, t2 is the end node and t3 is the weight between t1 and t2
        cout<<"Please input the number of node(n), edges(m) and start node(s):"<<endl;
        cin>>n>>m>>s;
        int edge[n+1][n+1];//Store the edges for the n nodes
        int dis[n+1], is_visited[n+1];// dis[k] store the min distance between s and k,
                                         is_visited store the status of the node(whether it is visited or not)
    
        //Init the edge[][] with the max_int
        for(int i=1; i<=n; i++){
            for(int j = 1; j <= n; j++)
                if(i==j) edge[i][j] = 0;
                else edge[i][j] = max_int;
        }
    
        //Input the Edge data
        cout<<"Please input the edge data: t1(start node), t2(end node), t3(weight)"<<endl;
        for(int i=1; i<=m; i++){
            cin>>t1>>t2>>t3;
            edge[t1][t2] = t3;
        }
    
        /*
         * Init the is_visited[] with 0
         * Init the dis[]
         */
        for(int i=1; i<=n; i++){
            is_visited[i] = 0;
            dis[i] = edge[s][i];
        }
    
        is_visited[s] = 1;
    
        //The Dijkstra algorithm
        for(int i=1; i<=n; i++){
            int u; // Store the min value index in dis[] which is not visited
            int min = max_int; // Store the min value in dis[] which is not visited
            for(int j=1; j<=n; j++){
                if(is_visited[j]==0 && dis[j]<min){
                    min = dis[j];
                    u = j;
                }
            }
    
            is_visited[u] = 1;
            for(int k=1; k<=n; k++){
                //第一层判断防止dis[u]+edge[u][k]越界
                if(edge[u][k] < max_int){
                    if(is_visited[k]==0 && dis[k]>dis[u]+edge[u][k]){
                        dis[k] = dis[u] + edge[u][k];
                        cout<<u<<" "<<k<<" "<<dis[k]<<endl;
                    }
                }
            }
        }
    
        // Print the result
        for(int i=1; i<=n; i++){
            cout<<"The min weight between "<<s<<" and "<<i<<" is: "<<dis[i]<<endl;
        }
    
    }

    2、Floyd算法

    目的是求解任意两点的最短路径,核心思想是经过任意数量的节点进行中转,检查路径是否为最短

     for(k=1;k<=n;k++)//经过k进行中转
            for(i=1;i<=n;i++)
                for(j=1;j<=n;j++)
                    if(e[i][j]>e[i][k]+e[k][j])
                         e[i][j]=e[i][k]+e[k][j];
  • 相关阅读:
    七牛云李意扬:如何收集 Go 实时覆盖率丨ECUG Meetup 回顾
    OpenTelemetry 微服务链路追踪
    空接口
    安全规则集合
    采用最快回应
    Golang单元测试实战
    源码 kratos 配置热加载分析
    烟花 光影
    控制Repeater显示列数
    基本代码安全知识
  • 原文地址:https://www.cnblogs.com/likailiche/p/5977593.html
Copyright © 2011-2022 走看看