题意
给定一个N个元素的数组,求任意两个不重叠的连续区间的异或和之和的最大值。
思路
先预处理出异或前缀和,然后用trie树维护预处理出每个位置到左端点的最大的区间异或和。反方向也处理一遍。最后枚举中间的分割位置即可。
#include <bits/stdc++.h>
#define endl '
'
#define IOS std::ios::sync_with_stdio(0); cin.tie(0); cout.tie(0)
#define FILE freopen(".//data_generator//in.txt","r",stdin),freopen("res.txt","w",stdout)
#define FI freopen(".//data_generator//in.txt","r",stdin)
#define FO freopen("res.txt","w",stdout)
#define pb push_back
#define mp make_pair
#define seteps(N) fixed << setprecision(N)
typedef long long ll;
using namespace std;
/*-----------------------------------------------------------------*/
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
#define INF 0x3f3f3f3f
const int N = 5e5 + 10;
const int MX = 1e7 + 10;
const double eps = 1e-5;
int tr[MX][2];
int ct;
void insert(int x) {
int cur = 0;
for(int i = 30; i >= 0; i--) {
bool ntp = (x & (1 << i));
if(!tr[cur][ntp]) {
tr[cur][ntp] = ++ct;
cur = ct;
tr[cur][0] = tr[cur][1] = 0;
} else {
cur = tr[cur][ntp];
}
}
}
int findmax(int x) {
int cur = 0;
int res = 0;
for(int i = 30; i >= 0; i--) {
bool ntp = (x & (1 << i));
if(tr[cur][!ntp]) {
cur = tr[cur][!ntp];
res ^= (1 << i);
} else {
cur = tr[cur][ntp];
}
}
return res;
}
int arr[N];
int pre[N];
int last[N];
int mxp[N];
int mxl[N];
int main() {
IOS;
int n;
cin >> n;
for(int i = 1; i <= n; i++) {
cin >> arr[i];
}
n++;
for(int i = 1; i <= n; i++) {
pre[i] = (pre[i - 1] ^ arr[i]);
}
for(int i = n; i >= 1; i--) {
last[i] = (last[i + 1] ^ arr[i]);
}
for(int i = 0; i <= n; i++) {
insert(pre[i]);
mxp[i] = max(mxp[i - 1], findmax(pre[i]));
}
ct = 0;
tr[0][0] = tr[0][1] = 0;
for(int i = n; i >= 0; i--) {
insert(last[i]);
mxl[i] = max(mxl[i - 1], findmax(last[i]));
}
int ans = 0;
for(int i = 1; i <= n - 1; i++) {
ans = max(ans, mxp[i] + mxl[i + 1]);
}
cout << ans<< endl;
}