题目
题解
先放一个LGV引理的链接在这里。
主要讲讲题解中这里的推导
每次从后往前,后一列减去(t)倍前一列可得
[(a_i+1)prod_{k=2}^{j+1}{(a_i+k)}-t(a_i+1)prod_{k=2}^{j}{(a_i+k)}=(a_i+1)(a_i+j+1-t)prod_{k=2}^j{(a_i+k)}
]
令(t=j),可得
[(a_i+1)^2prod_{k=2}^j{(a_i+k)}
]
重复这个过程,直到连乘的项消去,剩余第(j)列就是((a_i+1)^j)。
这个是范德蒙矩阵的形式,具体化简过程百度或自己推。
最后要求(prod_{1le i < j le n}{(a_j-a_i)}),直接卷积求出所有差值的个数然后快速幂即可。由于相同差值至多出现1e5次,可以直接ntt。注意多项式乘法最后度数要乘2,这样卷积出来的结果才是正确的。
#include <bits/stdc++.h>
#define endl '
'
#define IOS std::ios::sync_with_stdio(0); cin.tie(0); cout.tie(0)
#define mp make_pair
#define seteps(N) fixed << setprecision(N)
typedef long long ll;
using namespace std;
/*-----------------------------------------------------------------*/
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
#define INF 0x3f3f3f3f
const int N = 3e6;
const int M = 998244353;
const double eps = 1e-5;
int rev[N];
inline ll qpow(ll a, ll b, ll m) {
ll res = 1;
while(b) {
if(b & 1) res = (res * a) % m;
a = (a * a) % m;
b = b >> 1;
}
return res;
}
void change(ll y[], int len) {
for(int i = 0; i < len; ++i) {
rev[i] = rev[i >> 1] >> 1;
if(i & 1) {
rev[i] |= len >> 1;
}
}
for(int i = 0; i < len; ++i) {
if(i < rev[i]) {
swap(y[i], y[rev[i]]);
}
}
return;
}
void fft(ll y[], int len, int on) {
change(y, len);
for(int h = 2; h <= len; h <<= 1) {
ll gn = qpow(3, (M - 1) / h, M);
if(on == -1) gn = qpow(gn, M - 2, M);
for(int j = 0; j < len; j += h) {
ll g = 1;
for(int k = j; k < j + h / 2; k++) {
ll u = y[k];
ll t = g * y[k + h / 2] % M;
y[k] = (u + t) % M;
y[k + h / 2] = (u - t + M) % M;
g = g * gn % M;
}
}
}
if(on == -1) {
ll inv = qpow(len, M - 2, M);
for(int i = 0; i < len; i++) {
y[i] = y[i] * inv % M;
}
}
}
int get(int x) {
int res = 1;
while(res < x) {
res <<= 1;
}
return res;
}
ll f1[N], f2[N];
int main() {
IOS;
int n;
cin >> n;
int mx = 1000000;
int up = 0;
ll rj = 1, prod = 1, tj = 1;
for(int i = 1; i <= n; i++) {
int x;
cin >> x;
f1[x] = 1;
f2[mx - x] = 1;
prod = prod * (x + 1) % M;
tj = tj * i % M;
rj = rj * tj % M;
up = x;
}
rj = qpow(rj, M - 2, M);
int len = get(2 * mx + 1);
fft(f1, len, 1);
fft(f2, len, 1);
for(int i = 0; i < len; i++) f1[i] = f1[i] * f2[i] % M;
fft(f1, len, -1);
ll ans = 1;
for(int i = 1; i <= mx; i++) {
ans = ans * qpow(i, f1[mx - i], M) % M;
}
ans = ans * rj % M * prod % M;
cout << ans << endl;
}