zoukankan      html  css  js  c++  java
  • 21牛客9C

    题目

    C-Cells_2021牛客暑期多校训练营9

    题解

    先放一个LGV引理的链接在这里。

    主要讲讲题解中这里的推导

    每次从后往前,后一列减去(t)倍前一列可得

    [(a_i+1)prod_{k=2}^{j+1}{(a_i+k)}-t(a_i+1)prod_{k=2}^{j}{(a_i+k)}=(a_i+1)(a_i+j+1-t)prod_{k=2}^j{(a_i+k)} ]

    (t=j),可得

    [(a_i+1)^2prod_{k=2}^j{(a_i+k)} ]

    重复这个过程,直到连乘的项消去,剩余第(j)列就是((a_i+1)^j)

    这个是范德蒙矩阵的形式,具体化简过程百度或自己推。

    最后要求(prod_{1le i < j le n}{(a_j-a_i)})​​,直接卷积求出所有差值的个数然后快速幂即可。由于相同差值至多出现1e5次,可以直接ntt。注意多项式乘法最后度数要乘2,这样卷积出来的结果才是正确的。

    #include <bits/stdc++.h>
    
    #define endl '
    '
    #define IOS std::ios::sync_with_stdio(0); cin.tie(0); cout.tie(0)
    #define mp make_pair
    #define seteps(N) fixed << setprecision(N) 
    typedef long long ll;
    
    using namespace std;
    /*-----------------------------------------------------------------*/
    
    ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
    #define INF 0x3f3f3f3f
    
    const int N = 3e6;
    const int M = 998244353;
    const double eps = 1e-5;
    
    int rev[N];
    
    inline ll qpow(ll a, ll b, ll m) {
        ll res = 1;
        while(b) {
            if(b & 1) res = (res * a) % m;
            a = (a * a) % m;
            b = b >> 1;
        }
        return res;
    }
    
    void change(ll y[], int len) {
        for(int i = 0; i < len; ++i) {
            rev[i] = rev[i >> 1] >> 1;
            if(i & 1) {
                rev[i] |= len >> 1;
            }
        }
        for(int i = 0; i < len; ++i) {
            if(i < rev[i]) {
                swap(y[i], y[rev[i]]);
            }
        }
        return;
    }
    
    void fft(ll y[], int len, int on) {
        change(y, len);
        for(int h = 2; h <= len; h <<= 1) {
            ll gn = qpow(3, (M - 1) / h, M);
            if(on == -1) gn = qpow(gn, M - 2, M);
            for(int j = 0; j < len; j += h) {
                ll g = 1;
                for(int k = j; k < j + h / 2; k++) {
                  ll u = y[k];
                  ll t = g * y[k + h / 2] % M;
                  y[k] = (u + t) % M;
                  y[k + h / 2] = (u - t + M) % M;
                  g = g * gn % M;
                }
            }
        }
        if(on == -1) {
            ll inv = qpow(len, M - 2, M);
            for(int i = 0; i < len; i++) {
                y[i] = y[i] * inv % M;
            }
        }
    }
    
    int get(int x) {
        int res = 1;
        while(res < x) {
            res <<= 1;
        }
        return res;
    }
    
    ll f1[N], f2[N];
    
    int main() {
        IOS;
        int n;
        cin >> n;
        int mx = 1000000;
        int up = 0;
        ll rj = 1, prod = 1, tj = 1;
        for(int i = 1; i <= n; i++) {
            int x;
            cin >> x;
            f1[x] = 1;
            f2[mx - x] = 1;
            prod = prod * (x + 1) % M;
            tj = tj * i % M;
            rj = rj * tj % M;
            up = x;
        }
        rj = qpow(rj, M - 2, M);
        int len = get(2 * mx + 1);
        fft(f1, len, 1);
        fft(f2, len, 1);
        for(int i = 0; i < len; i++) f1[i] = f1[i] * f2[i] % M;
        fft(f1, len, -1);
        ll ans = 1;
        for(int i = 1; i <= mx; i++) {
            ans = ans * qpow(i, f1[mx - i], M) % M;
        }
        ans = ans * rj % M * prod % M;
        cout << ans << endl;
    }
    
  • 相关阅读:
    新浪微博采用Oauth发送图片和文字
    android proguard也有弱点
    POJ 2376
    POJ 3259
    POJ 2253
    POJ 1062
    POJ 2299
    POJ 2186
    POJ 1860
    POJ 2823
  • 原文地址:https://www.cnblogs.com/limil/p/15144595.html
Copyright © 2011-2022 走看看