zoukankan      html  css  js  c++  java
  • 数据结构之算法

    算法是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每条指令表示一个或多个操作。

    算法是需要单独讲解的,在数据结构中谈到算法,是为了帮助理解好数据结构,并不会详谈算法的方方面面。

    两种算法的比较

    1+2+3+.....+100

    算法1:

    #include <stdio.h>
    
    int main(void) {
        int i, sum = 0, n = 100;
    	for(i = 1; i <= n; i++){
    	    sum += i;
    	}
    	printf("%d", sum);
    	return 0;
    }
    

     算法2(高斯的算法):

    #include <stdio.h>
    
    int main(void) {
        int i, sum = 0, n = 100;
      sum = (1+n)*n/2;
      printf("%d", sum);
      return 0;
    }
    

    显然高斯的算法厉害很多。

    算法的特性

    五个基本特性:输入、输出、有穷性、确定性和可行性

    1、输入输出

      算法具有林哥或多个输入,但至少有一个或多个输出,输出的形式可以是打印、返回一个或多个值。

    2、有穷性

      算法在指定邮箱的步骤之后,自动结束而不会出现无限循环,且每个步骤在可接受的时间内完成。

    3、确定性

      算法的每一步骤都具有确定的含义,不会出现二义性。

    4、可行性

      算法的每一步都必须是可行的。

    算法设计的要求

     好的算法应该具有:正确性、可读性、健壮性、高效率和低存储量的特征。

    1、正确性

      至少应该具有输入、输出和加工处理无歧义性、能正确反映问题的要求,能得到问题的正确答案。

      但通常对“正确”的理解有很大差别,大致分为以下四个层次:

        (1)没有语法错误;

        (2)合法的输入数据能产生满足要求的输出结果

        (3)非法的输入数据能满足规格说明的结果;

        (4)精心选择的,甚至刁难的测试数据都有满足要求的输出结果

      证明一个复杂算在所有层次是正确的,代价非常昂贵,所以一般,我们把层次3作为一个算法是否正确的标准。

    2、可读性

      便于阅读、理解和交流。可读性是算法好坏很重要的标志。

    3、健壮性

      输入数据不合法是,算法也能做出相关处理,而不是产生异常或莫名其妙的问题。

    4、时间效率高和存储量低

    函数的逐渐增长

      判断一个算法的效率时,函数中的参数和其他次要项常常可以忽略,而更应该关注主项(最高阶项)的阶数。

      某个算法,随着n的增长,它会越来越优于另一算法,或越来越差于另一算法。

    算法的时间复杂度

    1、定义

      T(n)=O(f(n)) ,表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称为算法的渐进时间复杂度,简称时间复杂度。其中f(n)是问题规模n的某个函数。

    用O( )体现算法时间复杂度的记法,称为 大O记法。

    2、推导大O阶方法

      (1)用常数1取代运行时间中的所有加法常数。

      (2)在修改后的运行次数函数中,只保留最高阶项。

      (3)如果最高阶项存在且不是1,这去除与这个项相乘的常数。

      得到的结果就是大O阶。

    举例:

    3、常数阶

    下面这个算法不是O(3),而是O(1)  

    int i, sum = 0, n = 100; /*执行一次*/
    sum = (1+n)*n/2; /*执行一次*/
    printf("%d", sum); /*执行一次*/
    

    执行时间恒定的算法,称之为具有O(1)的时间复杂度,又叫常数阶

    不管常数是多少,我们都记作O(1),而不能是O(3)等其他任何数字,这是初学者常犯的错误。

    对于分支结构(不包含在循环结构中),无论真假,执行次数都是恒定的,所以其时间复杂度也是O(1).

    4、线性阶

      分析算法的复杂度,关键是要分析出循环结构的运行情况。

      下面这段代码是O(n),因为循环体要执行n次 

     int i, sum = 0, n = 100;
    	for(i = 1; i <= n; i++){
    	    sum += i;
    	}
    

    5、对数阶

    下面这段代码,x = ㏒₂n,所以时间复杂度为O(㏒n)

    int count = 1, n = 100;
    	while (count < n) {
    	    count *= 2;
    	}
    

    6、平方阶

    下面这段代码,循环体的嵌套,时间复杂度为O(n²)

    for(int i = 0;i <n; i++){
    	    for(int j = 0;j <n; j++){
    	        printf("test")
    	    }
    	}
    

    理解大O推导不难,难的是对数列的一些相关运算,这更多的是考察你的数学知识和能力。

    常见的时间复杂度

    时间复杂度耗费时间从小到大排序依次是

    执行次数函数 非正式术语
    12 O(1) 常数阶
    5㏒₂n+20 O(㏒n) 对数阶
    2n+1 O(n) 线性阶
    2n+3n㏒₂n+19 O(n㏒n) n㏒n阶
    3n²+2n+1 O(n²) 平方阶
    6n³+2n²+3n+4

    O(n³)

    立方阶
    2ⁿ O(2ⁿ) 指数阶

    当然还有O(n!)和O(nⁿ),但O(n³)、O(2ⁿ)、O(n!)和O(nⁿ)除非很小的n值,否则哪怕n只是100,都是噩梦般的运行时间,对于这种不切实际的算法时间复杂度,一般都不讨论它。

    最坏情况运行时间和平均运行时间

    最坏情况运行时间是一种保证,那就是运行时间将不会再坏了。在应用中,这是一种最重要的需求,通常,我们提到的运行时间都是最坏情况的运行时间。

    而平均运行时间是所有情况中最有意义的,因为它是期望的运行时间。

    算法空间复杂度

    写代码时,完全可以用空间换取时间。

    算法的空间复杂度通过计算算法所需的存储空间实现,算法空间复杂度的计算公式记作:S(n)=O(f(n))。

    我们讨论的一般都是算法的时间复杂度。

      

     

  • 相关阅读:
    JAVA代码格式 Google-java-format VS AlibabaP3C
    推荐Java代码规范的几个插件
    muduo 库解析之六:Exception
    muduo 库解析之五:CurrentThread
    muduo 库解析之二:TimeStamp
    muduo 库解析之一:Copyable 和 NonCopyable
    YUV
    Windows 下 ffmpeg 的安装和测试
    QImage 与 Mat 转换时图像倾斜
    qBreakpad
  • 原文地址:https://www.cnblogs.com/lingzeng86/p/6718230.html
Copyright © 2011-2022 走看看