zoukankan      html  css  js  c++  java
  • PAT public bike management (30)

    There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city.
    The Public Bike Management Center (PBMC) keeps monitoring the real-time capacity of all the stations. A station is said to be in perfect condition if it is exactly half-full. If a station is full or empty, PBMC will collect or send bikes to adjust the condition of that station to perfect. And more, all the stations on the way will be adjusted as well.
    When a problem station is reported, PBMC will always choose the shortest path to reach that station. If there are more than one shortest path, the one that requires the least number of bikes sent from PBMC will be chosen.

    Figure 1
    Figure 1 illustrates an example. The stations are represented by vertices and the roads correspond to the edges. The number on an edge is the time taken to reach one end station from another. The number written inside a vertex S is the current number of bikes stored at S. Given that the maximum capacity of each station is 10. To solve the problem at S3 , we have 2 different shortest paths:
    1. PBMC -> S1 -> S3 . In this case, 4 bikes must be sent from PBMC, because we can collect 1 bike from S1 and then take 5 bikes to S3 , so that both stations will be in perfect conditions.
    2. PBMC -> S2 -> S3 . This path requires the same time as path 1, but only 3 bikes sent from PBMC and hence is the one that will be chosen.

    #include<bits/stdc++.h>
    using namespace std;
    #define inf 0x3f3f3f3f
    int c,n,m,des;
    struct edge{int to,cost;};
    typedef pair<int,int>pir;
    vector<edge> e[505];
    int d[505];
    int num[505];
    vector<int> pre[505];
    void dijkstra()
    {
        priority_queue<pir,vector<pir>,greater<pir> > q;
        while(!q.empty())q.pop();
        memset(d,inf,sizeof(d));
        d[0]=0;
        pir tmp(0,0);
        q.push(tmp);
        while(!q.empty())
        {
            tmp=q.top();q.pop();
            if(d[tmp.second]<tmp.first)continue;
            int id=tmp.second;
            for(int i=0;i<e[id].size();i++)
            {
                int tt=e[id][i].to;
                if(d[tt]>d[id]+e[id][i].cost)
                {
                    d[tt]=d[id]+e[id][i].cost;
                    q.push(pir(d[tt],tt));
                    pre[tt].clear();
                    pre[tt].push_back(id);
                }
                else if(d[tt]==d[id]+e[id][i].cost)
                {
                    pre[tt].push_back(id);
                }
            }
        }
    }
    vector<int>ans;int ans1=0x3f3f3f3f,ans2=0x3f3f3f3f;
    void dfs(vector<int>vec,int now)
    {
        if(now==0)
        {
            int record=0;int a1=0;int sum=0;
            for(int j=vec.size()-1;j>=0;j--)
            {
                if(vec[j]==0)continue;
                int t=vec[j];
                sum+=num[t];
                if(num[t]==c/2)continue;
                else if(num[t]>c/2)record+=num[t]-c/2;
                else record-=c/2-num[t];
                if(record<0)a1=max(a1,-record);
            }
            int a2=a1+sum-(c/2)*(vec.size()-1);
            if(a1<ans1)
            {
                ans=vec;ans1=a1;ans2=a2;
                
            }
            else if(a1==ans1)
            {
                if(a2<ans2)
                {
                    ans=vec;ans1=a1;ans2=a2;
                }
            }
     
            return;
        }
        vector<int>tmp;
        for(int i=0;i<pre[now].size();i++)
        {
            tmp=vec;tmp.push_back(pre[now][i]);
            dfs(tmp,pre[now][i]);
        }
    }
    int main()
    {
        cin>>c>>n>>des>>m;
        for(int i=1;i<=n;i++)cin>>num[i];
        int a,b,cost;edge tmp;
        for(int i=0;i<m;i++)
        {
            cin>>a>>b>>cost;tmp.to=b;tmp.cost=cost;
            e[a].push_back(tmp);
            tmp.to=a;
            e[b].push_back(tmp);
        }
        dijkstra();
        vector<int>path;
        path.clear();
        path.push_back(des);
        dfs(path,des);
        cout<<ans1<<" ";
        for(int i=ans.size()-1;i>=0;i--)
        {
            cout<<ans[i];
            if(i!=0)printf("->");
        }
        cout<<" "<<ans2<<endl;
        return 0;
    }
  • 相关阅读:
    Algs4-1.3链表实现泛型可迭代Stack
    Algs4-1.3链表实现科泛型可迭代Bag
    Algs4-1.3链表实现不定容泛型Queue不支持迭代
    Algs4-1.3不定容数组实现泛型栈支持迭代
    Algs4-1.3链表实现不定容泛型Stack不支持迭代
    Algs4-1.3不定容泛型栈(不可迭代)
    Algs4-1.3定容字符串栈
    Algs4-1.3定容泛型栈
    Algs4-1.3E.W.Dijkstra双栈算术表达式求值算法
    Algs4-1.2(非习题)可视化累加器
  • 原文地址:https://www.cnblogs.com/linruier/p/10085408.html
Copyright © 2011-2022 走看看