zoukankan      html  css  js  c++  java
  • UVA 11971 Polygon

    #include<bits/stdc++.h>
    #include<stdio.h>
    #include<iostream>
    #include<cmath>
    #include<math.h>
    #include<queue>
    #include<set>
    #include<map>
    #include<iomanip>
    #include<algorithm>
    #include<stack>
    #define inf 0x3f3f3f3f
    using namespace std;
    typedef long long ll;
    ll gcd(ll a,ll b)
    {
        return b==0?a:gcd(b,a%b);
    }
    
    ll mypow(int a,int b)
    {
        ll res=1;
        while(b--)res*=a;
        return res;
    }
    
    //分数类
    struct Fraction{
        long long num;
        long long den;
        Fraction(long long num=0,long long den=1){
            if(den<0){
                num=-num;
                den=-den;
            }
            assert(den!=0);
            long long g=gcd(abs(num),den);
            this->num=num/g;
            this->den=den/g;
        }
        Fraction operator+(const Fraction&o)const {
            return Fraction(num*o.den+den*o.num,den*o.den);
        }
        Fraction operator-(const Fraction&o)const{
            return Fraction(num*o.den-den*o.num,den*o.den);
        }
        Fraction operator*(const Fraction &o)const{
            return Fraction(num*o.num,den*o.den);
        }
        Fraction operator/(const Fraction&o)const{
            return Fraction(num*o.den,den*o.num);
        }
        bool operator<(const Fraction &o)const{
            return num*o.den<den*o.num;
        }
        bool operator==(const Fraction&o)const{
            return num*o.den==den*o.num;
        }
    };
    
    
    int id=1;
    int main()
    {
    #ifndef ONLINE_JUDGE
        freopen("in.txt","r",stdin);
    #endif // ONLIN
        int t;int n,k;
        cin>>t;
        Fraction f1(1,1);
        while(t--)
        {
            cin>>n>>k;
            Fraction f(k+1,mypow(2,k));
            Fraction ans;
            ans=f1-f;
            cout<<"Case #"<<id++<<": ";
            cout<<ans.num<<"/"<<ans.den<<endl;
        }
    }
  • 相关阅读:
    hdu5833----高斯消元
    高斯消元模板
    hdu4462--曼哈顿距离
    卡特兰数应用
    poj3070矩阵快速幂求斐波那契数列
    poj1042
    poj1328
    mvc 请求处理管道
    sql update 代替游标写法
    sql 表字段模糊连接
  • 原文地址:https://www.cnblogs.com/linruier/p/9532566.html
Copyright © 2011-2022 走看看