zoukankan      html  css  js  c++  java
  • Redis中的LFU算法

    Redis中的LRU算法文中说到,LRU有一个缺陷,在如下情况下:

    ~~~~~A~~~~~A~~~~~A~~~~A~~~~~A~~~~~A~~|
    ~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~|
    ~~~~~~~~~~C~~~~~~~~~C~~~~~~~~~C~~~~~~|
    ~~~~~D~~~~~~~~~~D~~~~~~~~~D~~~~~~~~~D|
    

    会将数据D误认为将来最有可能被访问到的数据。

    Redis作者曾想改进LRU算法,但发现RedisLRU算法受制于随机采样数maxmemory_samples,在maxmemory_samples等于10的情况下已经很接近于理想的LRU算法性能,也就是说,LRU算法本身已经很难再进一步了。

    于是,将思路回到原点,淘汰算法的本意是保留那些将来最有可能被再次访问的数据,而LRU算法只是预测最近被访问的数据将来最有可能被访问到。我们可以转变思路,采用一种LFU(Least Frequently Used)算法,也就是最频繁被访问的数据将来最有可能被访问到。在上面的情况中,根据访问频繁情况,可以确定保留优先级:B>A>C=D。

    Redis中的LFU思路

    LFU算法中,可以为每个key维护一个计数器。每次key被访问的时候,计数器增大。计数器越大,可以约等于访问越频繁。

    上述简单算法存在两个问题:

    • LRU算法中可以维护一个双向链表,然后简单的把被访问的节点移至链表开头,但在LFU中是不可行的,节点要严格按照计数器进行排序,新增节点或者更新节点位置时,时间复杂度可能达到O(N)。
    • 只是简单的增加计数器的方法并不完美。访问模式是会频繁变化的,一段时间内频繁访问的key一段时间之后可能会很少被访问到,只增加计数器并不能体现这种趋势。

    第一个问题很好解决,可以借鉴LRU实现的经验,维护一个待淘汰key的pool。第二个问题的解决办法是,记录key最后一个被访问的时间,然后随着时间推移,降低计数器。

    Redis对象的结构如下:

    typedef struct redisObject {
        unsigned type:4;
        unsigned encoding:4;
        unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or
                                * LFU data (least significant 8 bits frequency
                                * and most significant 16 bits access time). */
        int refcount;
        void *ptr;
    } robj;

    LRU算法中,24 bits的lru是用来记录LRU time的,在LFU中也可以使用这个字段,不过是分成16 bits与8 bits使用:

               16 bits      8 bits
          +----------------+--------+
          + Last decr time | LOG_C  |
          +----------------+--------+
    

    高16 bits用来记录最近一次计数器降低的时间ldt,单位是分钟,低8 bits记录计数器数值counter

    LFU配置

    Redis4.0之后为maxmemory_policy淘汰策略添加了两个LFU模式:

    • volatile-lfu:对有过期时间的key采用LFU淘汰算法
    • allkeys-lfu:对全部key采用LFU淘汰算法

    还有2个配置可以调整LFU算法:

    lfu-log-factor 10
    lfu-decay-time 1
    

    lfu-log-factor可以调整计数器counter的增长速度,lfu-log-factor越大,counter增长的越慢。

    lfu-decay-time是一个以分钟为单位的数值,可以调整counter的减少速度

    源码实现

    lookupKey中:

    robj *lookupKey(redisDb *db, robj *key, int flags) {
        dictEntry *de = dictFind(db->dict,key->ptr);
        if (de) {
            robj *val = dictGetVal(de);
    
            /* Update the access time for the ageing algorithm.
             * Don't do it if we have a saving child, as this will trigger
             * a copy on write madness. */
            if (server.rdb_child_pid == -1 &&
                server.aof_child_pid == -1 &&
                !(flags & LOOKUP_NOTOUCH))
            {
                if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
                    updateLFU(val);
                } else {
                    val->lru = LRU_CLOCK();
                }
            }
            return val;
        } else {
            return NULL;
        }
    }

    当采用LFU策略时,updateLFU更新lru

    /* Update LFU when an object is accessed.
     * Firstly, decrement the counter if the decrement time is reached.
     * Then logarithmically increment the counter, and update the access time. */
    void updateLFU(robj *val) {
        unsigned long counter = LFUDecrAndReturn(val);
        counter = LFULogIncr(counter);
        val->lru = (LFUGetTimeInMinutes()<<8) | counter;
    }

    降低LFUDecrAndReturn

    首先,LFUDecrAndReturncounter进行减少操作:

    /* If the object decrement time is reached decrement the LFU counter but
     * do not update LFU fields of the object, we update the access time
     * and counter in an explicit way when the object is really accessed.
     * And we will times halve the counter according to the times of
     * elapsed time than server.lfu_decay_time.
     * Return the object frequency counter.
     *
     * This function is used in order to scan the dataset for the best object
     * to fit: as we check for the candidate, we incrementally decrement the
     * counter of the scanned objects if needed. */
    unsigned long LFUDecrAndReturn(robj *o) {
        unsigned long ldt = o->lru >> 8;
        unsigned long counter = o->lru & 255;
        unsigned long num_periods = server.lfu_decay_time ? LFUTimeElapsed(ldt) / server.lfu_decay_time : 0;
        if (num_periods)
            counter = (num_periods > counter) ? 0 : counter - num_periods;
        return counter;
    }

    函数首先取得高16 bits的最近降低时间ldt与低8 bits的计数器counter,然后根据配置的lfu_decay_time计算应该降低多少。

    LFUTimeElapsed用来计算当前时间与ldt的差值:

    /* Return the current time in minutes, just taking the least significant
     * 16 bits. The returned time is suitable to be stored as LDT (last decrement
     * time) for the LFU implementation. */
    unsigned long LFUGetTimeInMinutes(void) {
        return (server.unixtime/60) & 65535;
    }
    
    /* Given an object last access time, compute the minimum number of minutes
     * that elapsed since the last access. Handle overflow (ldt greater than
     * the current 16 bits minutes time) considering the time as wrapping
     * exactly once. */
    unsigned long LFUTimeElapsed(unsigned long ldt) {
        unsigned long now = LFUGetTimeInMinutes();
        if (now >= ldt) return now-ldt;
        return 65535-ldt+now;
    }

    具体是当前时间转化成分钟数后取低16 bits,然后计算与ldt的差值now-ldt。当ldt > now时,默认为过了一个周期(16 bits,最大65535),取值65535-ldt+now

    然后用差值与配置lfu_decay_time相除,LFUTimeElapsed(ldt) / server.lfu_decay_time,已过去n个lfu_decay_time,则将counter减少n,counter - num_periods

    增长LFULogIncr

    增长函数LFULogIncr如下:

    /* Logarithmically increment a counter. The greater is the current counter value
     * the less likely is that it gets really implemented. Saturate it at 255. */
    uint8_t LFULogIncr(uint8_t counter) {
        if (counter == 255) return 255;
        double r = (double)rand()/RAND_MAX;
        double baseval = counter - LFU_INIT_VAL;
        if (baseval < 0) baseval = 0;
        double p = 1.0/(baseval*server.lfu_log_factor+1);
        if (r < p) counter++;
        return counter;
    }

    counter并不是简单的访问一次就+1,而是采用了一个0-1之间的p因子控制增长。counter最大值为255。取一个0-1之间的随机数r与p比较,当r<p时,才增加counter,这和比特币中控制产出的策略类似。p取决于当前counter值与lfu_log_factor因子,counter值与lfu_log_factor因子越大,p越小,r<p的概率也越小,counter增长的概率也就越小。增长情况如下:

    +--------+------------+------------+------------+------------+------------+
    | factor | 100 hits   | 1000 hits  | 100K hits  | 1M hits    | 10M hits   |
    +--------+------------+------------+------------+------------+------------+
    | 0      | 104        | 255        | 255        | 255        | 255        |
    +--------+------------+------------+------------+------------+------------+
    | 1      | 18         | 49         | 255        | 255        | 255        |
    +--------+------------+------------+------------+------------+------------+
    | 10     | 10         | 18         | 142        | 255        | 255        |
    +--------+------------+------------+------------+------------+------------+
    | 100    | 8          | 11         | 49         | 143        | 255        |
    +--------+------------+------------+------------+------------+------------+
    

    可见counter增长与访问次数呈现对数增长的趋势,随着访问次数越来越大,counter增长的越来越慢。

    新生key策略

    另外一个问题是,当创建新对象的时候,对象的counter如果为0,很容易就会被淘汰掉,还需要为新生key设置一个初始countercreateObject:

    robj *createObject(int type, void *ptr) {
        robj *o = zmalloc(sizeof(*o));
        o->type = type;
        o->encoding = OBJ_ENCODING_RAW;
        o->ptr = ptr;
        o->refcount = 1;
    
        /* Set the LRU to the current lruclock (minutes resolution), or
         * alternatively the LFU counter. */
        if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
            o->lru = (LFUGetTimeInMinutes()<<8) | LFU_INIT_VAL;
        } else {
            o->lru = LRU_CLOCK();
        }
        return o;
    }
    

    counter会被初始化为LFU_INIT_VAL,默认5。

    pool

    pool算法就与LRU算法一致了:

            if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) ||
                server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL)

    计算idle时有所不同:

            } else if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
                /* When we use an LRU policy, we sort the keys by idle time
                 * so that we expire keys starting from greater idle time.
                 * However when the policy is an LFU one, we have a frequency
                 * estimation, and we want to evict keys with lower frequency
                 * first. So inside the pool we put objects using the inverted
                 * frequency subtracting the actual frequency to the maximum
                 * frequency of 255. */
                idle = 255-LFUDecrAndReturn(o);

    使用了255-LFUDecrAndReturn(o)当做排序的依据。

    参考链接

  • 相关阅读:
    卸载cuda,以及N卡驱动
    ubuntu 16.04 从gcc 5.4 安装gcc 5.3.0
    Check failed: status == CUBLAS_STATUS_SUCCESS (13 vs. 0) CUBLAS_STATUS_EXECUTION_FAILED
    ubuntu16.04 caffe cuda9.1 segnet nvidia gpu安装注意的点
    ubuntu16.04安装docker
    进程管理
    Dev TextEdit 只输入数字
    dev gridcontrol添加右键菜单
    WinForm rdlc 报表自定义datatable数据源
    DevExpress GridControl使用方法总结2 属性说明
  • 原文地址:https://www.cnblogs.com/linxiyue/p/10955533.html
Copyright © 2011-2022 走看看