zoukankan      html  css  js  c++  java
  • Leetcode | Valid Sudoku & Sudoku Solver

    判断valid,没有更好的方法,只能brute force。

     1 class Solution {
     2 public:
     3     bool isValidSudoku(vector<vector<char> > &board) {
     4         
     5         int n;
     6         for (int i = 0; i < 9; ++i) {
     7             vector<bool> contained(9, false);
     8             for (int j = 0; j < 9; ++j) {
     9                 if (board[i][j] == '.') continue;
    10                 n = board[i][j] - '0' - 1;
    11                 if (contained[n]) return false;
    12                 contained[n] = true;
    13             }
    14         }
    15         
    16         for (int i = 0; i < 9; ++i) {
    17             vector<bool> contained(9, false);
    18             for (int j = 0; j < 9; ++j) {
    19                 if (board[j][i] == '.') continue;
    20                 n = board[j][i] - '0' - 1;
    21                 if (contained[n]) return false;
    22                 contained[n] = true;
    23             }
    24         }
    25         
    26         for (int i = 0; i < 3; ++i) {
    27             for (int j = 0; j < 3; ++j) {
    28                 vector<bool> contained(9, false);
    29                 for (int k = 0; k < 3; ++k) {
    30                     for (int m = 0; m < 3; ++m) {
    31                         if (board[i*3+k][j*3+m] == '.') continue;
    32                         n = board[i*3+k][j*3+m] - '0' - 1;
    33                         if (contained[n]) return false;
    34                         contained[n] = true;
    35                     }
    36                 }
    37             }
    38         }
    39         return true;
    40     }
    41 };

    求解决方案也只有backtrack。

     1 class Solution {
     2 public:
     3     void solveSudoku(vector<vector<char> > &board) {
     4         list<int> unsolved;
     5         getUnsolved(board, unsolved);
     6         recursive(board, unsolved);
     7     }
     8     
     9     bool recursive(vector<vector<char> > &board, list<int> &unsolved) {
    10         if (unsolved.empty()) return true;
    11         int loc = unsolved.front();
    12         int row = loc / 9;
    13         int col = loc % 9;
    14         
    15         vector<bool> contained(9, false);
    16         int n;
    17         for (int i = 0; i < 9; ++i) {
    18             if (board[row][i] != '.') {
    19                 contained[board[row][i] - '0' - 1] = true;
    20             }
    21             if (board[i][col] != '.') {
    22                 contained[board[i][col] - '0' - 1] = true;
    23             }
    24         }
    25         
    26         row = row / 3; col = col / 3;
    27         for (int i = 0; i < 3; ++i) {
    28             for (int j = 0; j < 3; ++j) {
    29                 if (board[row * 3 + i][col * 3 + j] != '.') {
    30                     contained[board[row * 3 + i][col * 3 + j] - '0' - 1] = true;
    31                 }
    32             }
    33         }
    34         
    35         row = loc / 9; col = loc % 9;
    36         for (int i = 0; i < 9; ++i) {
    37             if (!contained[i]) {
    38                 board[row][col] = i + 1 + '0'; 
    39                 unsolved.pop_front();
    40                 if (recursive(board, unsolved)) return true;
    41                 board[row][col] = '.';
    42                 unsolved.push_front(loc);
    43             }
    44         }
    45         
    46         return false;
    47     }
    48     
    49     void getUnsolved(vector<vector<char> > &board, list<int> &unsolved) {
    50         for (int i = 0; i < 9; i++) {
    51             for (int j = 0; j < 9; ++j) {
    52                 if (board[i][j] == '.') {
    53                     unsolved.push_back(i * 9 + j);
    54                 }
    55             }
    56         }
    57     }
    58 };

    用unsolved数组可以避免每次都需要从头扫到尾去找下一个元素。

    用contained数组先保存了在该行该格该九宫格里已经存在的数字。这样就可以直接去试验剩下的数字,而不需要每次都再检查一遍插入的值是否合法。

    backtrack是一个要有返回值,否则都不知道你backtrack到头了没,是否找到解决方案了。

  • 相关阅读:
    我的word发布博客测试
    framework源码调试
    微软发布各个阶段的发布程序
    ora9客户端字符集
    现知道一服务器有合法ip,现在在远端应如何连接到这个服务器访问
    布式Oracle的database link
    怎样用delphi7中的SQLconnection组件远程连接Oracle数据库
    不用安装oracle客户端使用oracle
    有关linux下远程连接(转)
    如何限制某个用户只能FTP不能TELNET?
  • 原文地址:https://www.cnblogs.com/linyx/p/3702450.html
Copyright © 2011-2022 走看看