Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
判断左右子树的高度相差是否大于1.
树的高度取决于左右子树的高度的最大值。
1 /** 2 * Definition for binary tree 3 * struct TreeNode { 4 * int val; 5 * TreeNode *left; 6 * TreeNode *right; 7 * TreeNode(int x) : val(x), left(NULL), right(NULL) {} 8 * }; 9 */ 10 class Solution { 11 public: 12 bool isBalanced(TreeNode *root) { 13 return getLayer(root, 1) != -1; 14 } 15 16 int getLayer(TreeNode *root, int layer) { 17 if (root == NULL) return layer; 18 int l = getLayer(root->left, layer + 1); 19 if (l == -1) return -1; 20 int r = getLayer(root->right, layer + 1); 21 if (r == -1) return -1; 22 if (abs(l - r) > 1) return -1; 23 return l > r ? l : r; 24 } 25 };
3-rd try:
1 class Solution { 2 public: 3 bool isBalanced(TreeNode *root) { 4 int height = 0; 5 return recurse(root, height); 6 } 7 8 bool recurse(TreeNode *root, int &height) { 9 if (root == NULL) return true; 10 int lheight = 0, rheight = 0; 11 if (!recurse(root->left, lheight) || !recurse(root->right, rheight)) return false; 12 height = 1 + (lheight > rheight ? lheight : rheight); 13 return abs(lheight - rheight) <= 1; 14 } 15 };