zoukankan      html  css  js  c++  java
  • POJ2253 Frogger

    Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping.
    Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps.
    To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence.
    The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.

    You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.

    Input

    The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.

    Output

    For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.

    Sample Input

    2
    0 0
    3 4
    
    3
    17 4
    19 4
    18 5
    
    0
    

    Sample Output

    Scenario #1
    Frog Distance = 5.000
    
    Scenario #2
    Frog Distance = 1.414

    大意就是求任意两个点之间所有路径中最大两点距离的最小值。可以看作是Floyd的变形,只需要把转移方程修改一下即可:d[i][j]=min(d[i][j],max(d[i][k],d[k][j]))其中d[i][j]表示i到j所有路程经过的最长边的最小值。
    当然也可以用dijkstra来写,松弛操作改为:if(!vis[y] && d[y]>max(d[x],a[x][y]))
                d[y]=max(d[x],a[x][y]);
    这其实也算是某种意义上的最短路,只不过定义不同。g++提交的话记得要把.3lf改成.3f才能过。
    //Floyd 
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    int n;
    struct node
    {
        double x;
        double y;
    }nod[205];
    double d[205][205];
    double floyd()
    {
        int i,j,k;
        for(k=1;k<=n;k++)
        {
            for(i=1;i<=n;i++)
            {
                for(j=1;j<=n;j++)
                {
                    d[i][j]=min(d[i][j],max(d[i][k],d[k][j]));
                }
            }
        }
        return d[1][2];
    }
    int main()
    {
        int cnt=0;
        while(scanf("%d",&n)!=EOF&&n)
        {
            cnt++;
            int i,j;
            //memset(d,0x3f,sizeof(d)); double不能用memset 
            for(i=1;i<=n;i++)
            {
                for(j=1;j<=n;j++)
                {
                    d[i][j]=1e9; 
                } 
            }
            for(i=1;i<=n;i++)
            {
                double x,y;
                scanf("%lf%lf",&x,&y);
                nod[i].x=x;
                nod[i].y=y;
            }
            for(i=1;i<=n;i++)
            {
                for(j=1;j<=n;j++)
                {
                    double len=sqrt((nod[i].x-nod[j].x)*(nod[i].x-nod[j].x)+(nod[i].y-nod[j].y)*(nod[i].y-nod[j].y));
                    d[i][j]=d[j][i]=min(d[i][j],len);
                    cout<<d[i][j]<<endl;
                } 
            }
            double out=floyd();
            printf("Scenario #%d
    ",cnt);
            printf("Frog Distance = %.3lf
    
    ",out);
        }
    } 
    
    
    //Dijkstra
    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    using namespace std;
    double a[305][305];
    double d[305];
    bool vis[305];
    int n;
    struct node
    {
        double x;
        double y;
    }nod[205];
    void dijkstra()
    {
    
        d[1]=0;
        int i;
        for(i=1;i<n;i++)
        {
            int x=0;
            int j;
            for(j=1;j<=n;j++)
            {
                if(!vis[j]&&(x==0||d[j]<d[x]))x=j;
            }
            vis[x]=1;
            int y;
            for(y=1;y<=n;y++)
            {
                
                
            }
        }
    }
    int main()
    {
        int cnt=0;
        while(scanf("%d",&n)!=EOF&&n)
        {
            cnt++;
            int i,j;
            //memset(d,0x3f,sizeof(d)); double不能用memset 
            for(i=1;i<=n;i++)
            {
                for(j=1;j<=n;j++)
                {
                    a[i][j]=1e9; 
                } 
                d[i]=1e9;
                vis[i]=0;
            }
            for(i=1;i<=n;i++)
            {
                double x,y;
                scanf("%lf%lf",&x,&y);
                nod[i].x=x;
                nod[i].y=y;
            }
            for(i=1;i<=n;i++)
            {
                for(j=1;j<=n;j++)
                {
                    double len=sqrt((nod[i].x-nod[j].x)*(nod[i].x-nod[j].x)+(nod[i].y-nod[j].y)*(nod[i].y-nod[j].y));
                    a[i][j]=a[j][i]=min(a[i][j],len);
                } 
            }
    //        for(i=1;i<=n;i++)
    //        {
    //            for(j=1;j<=n;j++)
    //            {
    //                cout<<a[i][j]<<' ';
    //            } 
    //            cout<<endl;
    //        }
    
            dijkstra();
            printf("Scenario #%d
    Frog Distance = %.3lf
    
    ",cnt,d[2]);
        }
    }

  • 相关阅读:
    有趣的linux指令
    Linux——文件打包与压缩
    linux点滴记录
    不归零法编码、曼彻斯特编码和差分曼彻斯特编码
    MySQL点滴记录
    hdu 1200 To and Fro(简单模拟或DP)
    hdu 1081 To The Max(dp+化二维为一维)
    抓起根本(二)(hdu 4554 叛逆的小明 hdu 1002 A + B Problem II,数字的转化(反转),大数的加法......)
    抓其根本(一)(hdu2710 Max Factor 素数 最大公约数 最小公倍数.....)
    hdu 1159 Common Subsequence(最长公共子序列 DP)
  • 原文地址:https://www.cnblogs.com/lipoicyclic/p/12310323.html
Copyright © 2011-2022 走看看