zoukankan      html  css  js  c++  java
  • Codeforces Round #628 (Div. 2) B. CopyCopyCopyCopyCopy(水题)

    Ehab has an array aa of length nn . He has just enough free time to make a new array consisting of nn copies of the old array, written back-to-back. What will be the length of the new array's longest increasing subsequence?

    A sequence aa is a subsequence of an array bb if aa can be obtained from bb by deletion of several (possibly, zero or all) elements. The longest increasing subsequence of an array is the longest subsequence such that its elements are ordered in strictly increasing order.

    Input

    The first line contains an integer tt  — the number of test cases you need to solve. The description of the test cases follows.

    The first line of each test case contains an integer nn (1n1051≤n≤105 ) — the number of elements in the array aa .

    The second line contains nn space-separated integers a1a1 , a2a2 , … , anan (1ai1091≤ai≤109 ) — the elements of the array aa .

    The sum of nn across the test cases doesn't exceed 105105 .

    Output

    For each testcase, output the length of the longest increasing subsequence of aa if you concatenate it to itself nn times.

    Example
    Input
    Copy
    2
    3
    3 2 1
    6
    3 1 4 1 5 9
    
    Output
    Copy
    3
    5
    求这个序列里有多少个不重复的元素即可(因为能复制无数遍)。]
    #include <bits/stdc++.h>
    using namespace std;
    int main()
    {
        int t;
        cin>>t;
        while(t--)
        {
            int n;
            set<int>s;
            int i;
            cin>>n;
            for(i=1;i<=n;i++)
            {
                int temp;
                scanf("%d",&temp);
                s.insert(temp);
            }
            cout<<s.size()<<endl;
        }
        return 0;
     } 


  • 相关阅读:
    自省改过
    c语言学习教程1之预定义代码
    tqdm进度条管理
    React-i18next切换中英文
    React怎样实现点击其他地方隐藏弹出的菜单
    遍历对象再取值,获得新值
    Web 用户体验设计提升指南
    antd vue form
    echarts 内容显示值在图中显示,不显示交互效果,只是静态图
    element-ui中el-table根据浏览器的缩放自适应宽度
  • 原文地址:https://www.cnblogs.com/lipoicyclic/p/12498981.html
Copyright © 2011-2022 走看看