题目
n个村庄间架设通信线路,每个村庄间的距离不同,如何架设最节省开销?
Kruskal算法
特点
- 适用于稀疏图,时间复杂度 是nlogn的。
核心思想
- 从小到大选取不会产生环的边。
代码实现
代码中需要采用并查集的方法检测是否有环。
static class Edge {
int a, b, val;
public Edge(int a, int b, int val) {
this.a = a;
this.b = b;
this.val = val;
}
}
int[] father;
// 并查集——寻找当前集合的代表元素
int find(int x) {
if (father[x] != x) father[x] = find(father[x]);
return father[x];
}
int Kruskal(Edge[] edge) {
int res = 0;
int n = edge.length;
father = new int[n];
// 初始化并查集代表元素
for (int i = 1; i <= n; i ++ ) father[i] = i;
// 升序排序
Arrays.sort(edge, (a, b) -> a.val - b.val);
for (Edge value : edge) {
int a = value.a, b = value.b;
// 如果不会产生环,则添加边
if (find(a) != find(b)) {
res += value.val;
// 合并两个点到一个块中
father[find(a)] = find(b);
}
}
return res;
}
prim算法
特点
- 适用于稠密图,时间复杂度 是n方的。
核心思想
- 每次挑选与当前集合连接的最短边。
代码实现
public int Prim() {
int res = 0;
for (int i = 1; i <= n; i ++ ) {
dist[i] = INF;
st[i] = false;
}
dist[1] = 0;
for (int i = 1; i <= n; i ++ ) {
int id = -1, min_dist = INF;
// 寻找最短边
for (int j = 1; j <= n; j ++ )
if (!st[j] && dist[j] < min_dist) {
id = j;
min_dist = dist[j];
}
st[id] = true;
res += dist[id];
// 用新加入的点更新其余点到生成树的最短边
for (int j = 1; j <= n; j ++ )
if (!st[j])
dist[j] = min(dist[j], g[id][j]);
}
return res;
}
总结
还是Kruskal算法更容易实现一些,只要遍历每条边就好了。