作业要求来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/3159
可以用pandas读出之前保存的数据:
newsdf = pd.read_csv(r'F:duymgzccnews.csv')
newsdf = pd.read_csv(r'F:gzccnews.csv')
一.把爬取的内容保存到数据库sqlite3
import sqlite3
with sqlite3.connect('gzccnewsdb.sqlite') as db:
newsdf.to_sql('gzccnews',con = db)
with sqlite3.connect('gzccnewsdb.sqlite') as db:
df2 = pd.read_sql_query('SELECT * FROM gzccnews',con=db)
import sqlite3 with sqlite3.connect('gzccnewsdb.sqlite') as db: newsdf.to_sql('gzccnews',con = db) with sqlite3.connect('gzccnewsdb.sqlite') as db: df2 = pd.read_sql_query('SELECT * FROM gzccnews',con=db)
保存到MySQL数据库
- import pandas as pd
- import pymysql
- from sqlalchemy import create_engine
- conInfo = "mysql+pymysql://user:passwd@host:port/gzccnews?charset=utf8"
- engine = create_engine(conInfo,encoding='utf-8')
- df = pd.DataFrame(allnews)
- df.to_sql(name = ‘news', con = engine, if_exists = 'append', index = False)
import pandas as pd import pymysql from sqlalchemy import create_engine conInfo = "mysql+pymysql://user:@localhost:3306/gzccnews?charset=utf8" engine = create_engine(conInfo,encoding='utf-8') df = pd.DataFrame(allnews) df.to_sql(name = ‘news', con = engine, if_exists = 'append', index = False)
二.爬虫综合大作业
- 选择一个热点或者你感兴趣的主题。
- 选择爬取的对象与范围。
- 了解爬取对象的限制与约束。
- 爬取相应内容。
- 做数据分析与文本分析。
- 形成一篇文章,有说明、技术要点、有数据、有数据分析图形化展示与说明、文本分析图形化展示与说明。
- 文章公开发布。
我要爬取的对象和范围:李冰冰的微博内容
爬取对象来源:https://m.weibo.cn/u/1192515960?uid=1192515960&luicode=10000011&lfid=100103type%3D3%26q%3D%E6%9D%8E%E5%86%B0%E5%86%B0
第一步:分析网址
分析浏览器发送请求的过程
打开 Chrome 浏览器的调试功能,选择 Network 菜单,观察到获取微博数据的的接口是 https://m.weibo.cn/api/container/getIndex ,后面附带了一连串的参数,这里面有些参数是根据用户变化的,有些是固定的,先提取出来。
uid=1192515960&
luicode=10000011&
lfid=100103type=3&q=李冰冰
featurecode=20000320&
type=user&
containerid=1005051192515960
再来分析接口的返回结果,返回数据是一个JSON字典结构,total 是微博总条数,每一条具体的微博内容封装在 cards 数组中,具体内容字段是里面的 text 字段。很多干扰信息已隐去。
{
"cardlistInfo": {
"containerid": "1005051192515960",
"total": 4963,
"page": 2
},
"cards": [
{
"card_type": 9,
"mblog": {
"created_at": "23小时前",
"idstr": "4369352550097750",
"text": "支持~",
}
}]
}
第二步:构建请求头和查询参数
分析完网页后,开始用 requests 模拟浏览器构造爬虫获取数据,因为这里获取用户的数据无需登录微博,所以我们不需要构造 cookie信息,只需要基本的请求头即可,具体需要哪些头信息也可以从浏览器中获取,首先构造必须要的请求参数,包括请求头和查询参数。
headers = {
"Host": "m.weibo.cn",
"Referer": "https://m.weibo.cn/u/1192515960",
"User-Agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 9_1 like Mac OS X) AppleWebKit/601.1.46 (KHTML, like Gecko) "
"Version/9.0 Mobile/13B143 Safari/601.1",
}
params = {"uid": "{uid}",
"luicode": "10000011",
"type": "uid",
"value": "1192515960",
"containerid": "{containerid}",
"page": "{page}"}
- uid是微博用户的id
- containerid虽然不知道什么意思,但也是和具体某个用户相关的参数
- page 分页参数
第三步:构造简单爬虫
通过返回的数据能查询到总微博条数 total,爬取数据直接利用 requests 提供的方法把 json 数据转换成 Python 字典对象,从中提取出所有的 text 字段的值并放到 blogs 列表中,提取文本之前进行简单过滤,去掉无用信息。顺便把数据写入文件,方便下次转换时不再重复爬取。
def fetch_data(uid=None, container_id=None):
"""
抓取数据,并保存到CSV文件中
:return:
"""
page = 0
total = 4754
blogs = []
for i in range(0, total // 10):
params['uid'] = uid
params['page'] = str(page)
params['containerid'] = container_id
res = requests.get(url, params=params, headers=HEADERS)
cards = res.json().get("cards")
for card in cards:
# 每条微博的正文内容
if card.get("card_type") == 9:
text = card.get("mblog").get("text")
text = clean_html(text)
blogs.append(text)
page += 1
print("抓取第{page}页,目前总共抓取了 {count} 条微博".format(page=page, count=len(blogs)))
with codecs.open('weibo.txt', 'w', encoding='utf-8') as f:
f.write("
".join(blogs))
第四步:分词处理并构建词云
爬虫了所有数据之后,先进行分词,这里用的是结巴分词,按照中文语境将句子进行分词处理,分词过程中过滤掉停止词,处理完之后找一张参照图,然后根据参照图通过词语拼装成图。
def generate_image():
data = []
jieba.analyse.set_stop_words("./stopwords.txt")
with codecs.open("weibo.txt", 'r', encoding="utf-8") as f:
for text in f.readlines():
data.extend(jieba.analyse.extract_tags(text, topK=20))
data = " ".join(data)
mask_img = imread('./52f90c9a5131c.jpg', flatten=True)
wordcloud = WordCloud(
font_path='msyh.ttc',
background_color='white',
mask=mask_img
).generate(data)
plt.imshow(wordcloud.recolor(color_func=grey_color_func, random_state=3),
interpolation="bilinear")
plt.axis('off')
plt.savefig('./heart2.jpg', dpi=1600)
最终效果图:
总结:从李冰冰的微博动态可以看出,她是一个比较励志的人,所散发的精神以积极向上为多。
参考:
爬了一下天猫上的Bra购买记录,有了一些羞羞哒的发现...
Python做了六百万字的歌词分析,告诉你中国Rapper都在唱些啥
分析了42万字歌词后,终于搞清楚民谣歌手唱什么了
十二星座的真实面目
唐朝诗人之间的关系到底是什么样的?
中国姓氏排行榜
三.爬虫注意事项
1.设置合理的爬取间隔,不会给对方运维人员造成压力,也可以防止程序被迫中止。
- import time
- import random
- time.sleep(random.random()*3)
2.设置合理的user-agent,模拟成真实的浏览器去提取内容。
- 首先打开你的浏览器输入:about:version。
- 用户代理:
- 收集一些比较常用的浏览器的user-agent放到列表里面。
- 然后import random,使用随机获取一个user-agent
- 定义请求头字典headers={’User-Agen‘:}
- 发送request.get时,带上自定义了User-Agen的headers
3.需要登录
发送request.get时,带上自定义了Cookie的headers
headers={’User-Agen‘:
'Cookie': }
4.使用代理IP
通过更换IP来达到不断高 效爬取数据的目的。
headers = {
"User-Agent": "",
}
proxies = {
"http": " ",
"https": " ",
}
response = requests.get(url, headers=headers, proxies=proxies)