zoukankan      html  css  js  c++  java
  • LintCode-Rehashing

    The size of the hash table is not determinate at the very beginning. If the total size of keys is too large (e.g. size >= capacity / 10), we should double the size of the hash table and rehash every keys. Say you have a hash table looks like below:

     
    size=3, capacity=4
    [null, 21->9->null, 14->null, null]
     
    The hash function is:
     
    int hashcode(int key, int capacity) {
        return key % capacity;
    }
     
    here we have three numbers, 9, 14 and 21, where 21 and 9 share the same position as they all have the same hashcode 1 (21 % 4 = 9 % 4 = 1). We store them in the hash table by linked list.
     
    rehashing this hash table, double the capacity, you will get:
     
    size=3, capacity=8
    index:           0    1    2     3      4    5     6    7
    hash table: [null, 9, null, null, null, 21, 14, null]
     
    Given the original hash table, return the new hash table after rehashing .
    Note

    For negative integer in hash table, the position can be calculated as follow:

    In C++/Java, if you directly calculate -4 % 3 you will get -1. You can use function: a % b = (a % b + b) % b to make it is a non negative integer.

    In Python, you can directly use -1 % 3, you will get 2 automatically.

    Example

    Given [null, 21->9->null, 14->null, null], return [null, 9->null, null, null, null, 21->null, 14->null, null]

    Solution:
     1 /**
     2  * Definition for ListNode
     3  * public class ListNode {
     4  *     int val;
     5  *     ListNode next;
     6  *     ListNode(int x) {
     7  *         val = x;
     8  *         next = null;
     9  *     }
    10  * }
    11  */
    12 public class Solution {
    13     /**
    14      * @param hashTable: A list of The first node of linked list
    15      * @return: A list of The first node of linked list which have twice size
    16      */    
    17     public ListNode[] rehashing(ListNode[] hashTable) {
    18         int size = hashTable.length;
    19         if (size==0) return null;
    20         int newSize = 2*size;
    21         ListNode[] newTable = new ListNode[newSize];
    22         Arrays.fill(newTable,null);
    23 
    24         for (int i=0;i<size;i++){
    25             ListNode cur = hashTable[i];
    26             while (cur!=null){
    27                 ListNode temp = cur;
    28                 cur = cur.next;
    29                 //Calculate the new position for temp.
    30                 int val = (temp.val % newSize + newSize) % newSize;
    31                 if (newTable[val]==null){
    32                     newTable[val]=temp;
    33                     temp.next = null;
    34                 } else {
    35                     ListNode p = newTable[val];
    36                     while (p.next!=null) p = p.next;
    37                     p.next = temp;
    38                     temp.next = null;
    39                 }
    40             }
    41         }
    42 
    43         return newTable;
    44     }
    45 };
  • 相关阅读:
    Primary key and Unique index
    Hash unique和Sort unique
    Oracle索引扫描算法
    Oracle预估的基数算法
    PGA突破pga_aggregate_target限制
    aix ipcs使用说明
    开窗函数和聚合函数区别
    【39.66%】【codeforces 740C】Alyona and mex
    【81.82%】【codeforces 740B】Alyona and flowers
    Android SDK离线安装
  • 原文地址:https://www.cnblogs.com/lishiblog/p/4187959.html
Copyright © 2011-2022 走看看