zoukankan      html  css  js  c++  java
  • LintCode-Longest Increasing Subsequence

    Given a sequence of integers, find the longest increasing subsequence (LIS).

    You code should return the length of the LIS.

    Example

    For [5, 4, 1, 2, 3], the LIS  is [1, 2, 3], return 3

    For [4, 2, 4, 5, 3, 7], the LIS is [4, 4, 5, 7], return 4

    Challenge

    Time complexity O(n^2) or O(nlogn)

    Clarification

    What's the definition of longest increasing subsequence?

        * The longest increasing subsequence problem is to find a subsequence of a given sequence in which the subsequence's elements are in sorted order, lowest to highest, and in which the subsequence is as long as possible. This subsequence is not necessarily contiguous, or unique.  

        * https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

    Solution 1 (nlogn):

     1 public class Solution {
     2     /**
     3      * @param nums: The integer array
     4      * @return: The length of LIS (longest increasing subsequence)
     5      */
     6     public int longestIncreasingSubsequence(int[] nums) {
     7         if (nums.length==0) return 0;
     8         int len = nums.length;
     9         int[] seqEnd = new int[len+1];
    10         seqEnd[1] = 0;
    11         int lisLen = 1;
    12         for (int i=1;i<len;i++){
    13             int pos = findPos(nums,seqEnd,lisLen,i);
    14             seqEnd[pos] = i;
    15             if (pos>lisLen) lisLen = pos;
    16         }
    17 
    18         return lisLen;
    19         
    20     }
    21 
    22     public int findPos(int[] nums, int[] seqEnd, int lisLen, int index){
    23         int start = 1;
    24         int end = lisLen;
    25         while (start<=end){
    26             int mid = (start+end)/2;
    27     
    28             if (nums[index] == nums[seqEnd[mid]]){
    29                 return mid;
    30             } else if (nums[index]>nums[seqEnd[mid]]){
    31                 start = mid+1;
    32             } else end = mid-1;
    33         }
    34         return start;
    35     }
    36 }

     Solution 2 (n^2 DP):

     1 public class Solution {
     2     /**
     3      * @param nums: The integer array
     4      * @return: The length of LIS (longest increasing subsequence)
     5      */
     6     public int longestIncreasingSubsequence(int[] nums) {
     7         if (nums.length==0) return 0;
     8         int len = nums.length;
     9         int[] lisLen = new int[len];
    10         lisLen[0] = 1;
    11         int maxLen = lisLen[0];
    12         for (int i=1;i<len;i++){
    13             lisLen[i]=1;
    14             for (int j=i-1;j>=0;j--)
    15                 if (nums[i]>=nums[j] && lisLen[i]<lisLen[j]+1)
    16                     lisLen[i] = lisLen[j]+1;
    17             if (maxLen<lisLen[i]) maxLen = lisLen[i];
    18         }
    19 
    20         return maxLen;
    21 
    22     }
    23 }
  • 相关阅读:
    从Pycharm说起
    前端工程师小A学习JS的旅程
    模板引擎开发(一)
    Bootstrap01
    Passbook详解与开发案例
    DLL文件知多少?
    C#中的索引器的简单理解和用法
    python 的列表遍历删除
    Node.js与Golang使用感受与小结1
    解决设计中的两难问题
  • 原文地址:https://www.cnblogs.com/lishiblog/p/4190936.html
Copyright © 2011-2022 走看看