zoukankan      html  css  js  c++  java
  • LintCode-Longest Increasing Subsequence

    Given a sequence of integers, find the longest increasing subsequence (LIS).

    You code should return the length of the LIS.

    Example

    For [5, 4, 1, 2, 3], the LIS  is [1, 2, 3], return 3

    For [4, 2, 4, 5, 3, 7], the LIS is [4, 4, 5, 7], return 4

    Challenge

    Time complexity O(n^2) or O(nlogn)

    Clarification

    What's the definition of longest increasing subsequence?

        * The longest increasing subsequence problem is to find a subsequence of a given sequence in which the subsequence's elements are in sorted order, lowest to highest, and in which the subsequence is as long as possible. This subsequence is not necessarily contiguous, or unique.  

        * https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

    Solution 1 (nlogn):

     1 public class Solution {
     2     /**
     3      * @param nums: The integer array
     4      * @return: The length of LIS (longest increasing subsequence)
     5      */
     6     public int longestIncreasingSubsequence(int[] nums) {
     7         if (nums.length==0) return 0;
     8         int len = nums.length;
     9         int[] seqEnd = new int[len+1];
    10         seqEnd[1] = 0;
    11         int lisLen = 1;
    12         for (int i=1;i<len;i++){
    13             int pos = findPos(nums,seqEnd,lisLen,i);
    14             seqEnd[pos] = i;
    15             if (pos>lisLen) lisLen = pos;
    16         }
    17 
    18         return lisLen;
    19         
    20     }
    21 
    22     public int findPos(int[] nums, int[] seqEnd, int lisLen, int index){
    23         int start = 1;
    24         int end = lisLen;
    25         while (start<=end){
    26             int mid = (start+end)/2;
    27     
    28             if (nums[index] == nums[seqEnd[mid]]){
    29                 return mid;
    30             } else if (nums[index]>nums[seqEnd[mid]]){
    31                 start = mid+1;
    32             } else end = mid-1;
    33         }
    34         return start;
    35     }
    36 }

     Solution 2 (n^2 DP):

     1 public class Solution {
     2     /**
     3      * @param nums: The integer array
     4      * @return: The length of LIS (longest increasing subsequence)
     5      */
     6     public int longestIncreasingSubsequence(int[] nums) {
     7         if (nums.length==0) return 0;
     8         int len = nums.length;
     9         int[] lisLen = new int[len];
    10         lisLen[0] = 1;
    11         int maxLen = lisLen[0];
    12         for (int i=1;i<len;i++){
    13             lisLen[i]=1;
    14             for (int j=i-1;j>=0;j--)
    15                 if (nums[i]>=nums[j] && lisLen[i]<lisLen[j]+1)
    16                     lisLen[i] = lisLen[j]+1;
    17             if (maxLen<lisLen[i]) maxLen = lisLen[i];
    18         }
    19 
    20         return maxLen;
    21 
    22     }
    23 }
  • 相关阅读:
    【LVS 】NAT方式实现过程
    【 LVS 】类型及算法
    [ 总结 ] RHEL6/Centos6 使用OpenLDAP集中管理用户帐号
    [ 手记 ] 关于tomcat开机启动设置问题
    [ 总结 ] nginx 负载均衡 及 缓存
    Mac
    Swift
    Swift
    Cocoapods
    Swift
  • 原文地址:https://www.cnblogs.com/lishiblog/p/4190936.html
Copyright © 2011-2022 走看看