zoukankan      html  css  js  c++  java
  • LintCode-Longest Increasing Subsequence

    Given a sequence of integers, find the longest increasing subsequence (LIS).

    You code should return the length of the LIS.

    Example

    For [5, 4, 1, 2, 3], the LIS  is [1, 2, 3], return 3

    For [4, 2, 4, 5, 3, 7], the LIS is [4, 4, 5, 7], return 4

    Challenge

    Time complexity O(n^2) or O(nlogn)

    Clarification

    What's the definition of longest increasing subsequence?

        * The longest increasing subsequence problem is to find a subsequence of a given sequence in which the subsequence's elements are in sorted order, lowest to highest, and in which the subsequence is as long as possible. This subsequence is not necessarily contiguous, or unique.  

        * https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

    Solution 1 (nlogn):

     1 public class Solution {
     2     /**
     3      * @param nums: The integer array
     4      * @return: The length of LIS (longest increasing subsequence)
     5      */
     6     public int longestIncreasingSubsequence(int[] nums) {
     7         if (nums.length==0) return 0;
     8         int len = nums.length;
     9         int[] seqEnd = new int[len+1];
    10         seqEnd[1] = 0;
    11         int lisLen = 1;
    12         for (int i=1;i<len;i++){
    13             int pos = findPos(nums,seqEnd,lisLen,i);
    14             seqEnd[pos] = i;
    15             if (pos>lisLen) lisLen = pos;
    16         }
    17 
    18         return lisLen;
    19         
    20     }
    21 
    22     public int findPos(int[] nums, int[] seqEnd, int lisLen, int index){
    23         int start = 1;
    24         int end = lisLen;
    25         while (start<=end){
    26             int mid = (start+end)/2;
    27     
    28             if (nums[index] == nums[seqEnd[mid]]){
    29                 return mid;
    30             } else if (nums[index]>nums[seqEnd[mid]]){
    31                 start = mid+1;
    32             } else end = mid-1;
    33         }
    34         return start;
    35     }
    36 }

     Solution 2 (n^2 DP):

     1 public class Solution {
     2     /**
     3      * @param nums: The integer array
     4      * @return: The length of LIS (longest increasing subsequence)
     5      */
     6     public int longestIncreasingSubsequence(int[] nums) {
     7         if (nums.length==0) return 0;
     8         int len = nums.length;
     9         int[] lisLen = new int[len];
    10         lisLen[0] = 1;
    11         int maxLen = lisLen[0];
    12         for (int i=1;i<len;i++){
    13             lisLen[i]=1;
    14             for (int j=i-1;j>=0;j--)
    15                 if (nums[i]>=nums[j] && lisLen[i]<lisLen[j]+1)
    16                     lisLen[i] = lisLen[j]+1;
    17             if (maxLen<lisLen[i]) maxLen = lisLen[i];
    18         }
    19 
    20         return maxLen;
    21 
    22     }
    23 }
  • 相关阅读:
    springboot+swagger生成api文档
    字符串格式化
    Navicat过期
    网页版的支付宝授权登录(vue+java)
    window,sts安装python
    PageHelper分页+排序
    android那些事之Bitmap、InputStream、Drawable、byte[]、Base64之间的转换关系
    两种解析JSON的方法
    蓝牙那些事之远程设备
    蓝牙那些事之状态监听
  • 原文地址:https://www.cnblogs.com/lishiblog/p/4190936.html
Copyright © 2011-2022 走看看