Question:
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Analysis:
一个机器人在 m * n 网格的左上角(由start标识),每次这个机器人只能向右或向下移动,尝试到达网格的右下角(由finish标识)。
这里有多少条可能的不同的路径?
注意: m 和 n 都小于100.
思路:由于之前做过求最短路径的问题,所以很容易的想到动态规划的思想。
Answer:
public class Solution { public int uniquePaths(int m, int n) { if(m == 0 && n == 0) return 0; if(m == 1 || n == 1) return 1; int[][] dp = new int[m][n]; dp[0][0] = 1; for(int i=0; i<m; i++) { for(int j=0; j<n; j++) { if(i == 0 && j == 0) continue; else if(i == 0 && j != 0) dp[i][j] = dp[i][j-1]; else if(i != 0 && j == 0) dp[i][j] = dp[i-1][j]; else dp[i][j] = dp[i-1][j] + dp[i][j-1]; } } return dp[m-1][n-1]; } }