zoukankan      html  css  js  c++  java
  • PAT Advanced 1029 Median (25分)

    Given an increasing sequence S of N integers, the median is the number at the middle position. For example, the median of S1 = { 11, 12, 13, 14 } is 12, and the median of S2 = { 9, 10, 15, 16, 17 } is 15. The median of two sequences is defined to be the median of the nondecreasing sequence which contains all the elements of both sequences. For example, the median of S1 and S2 is 13.

    Given two increasing sequences of integers, you are asked to find their median.

    Input Specification:

    Each input file contains one test case. Each case occupies 2 lines, each gives the information of a sequence. For each sequence, the first positive integer N (≤) is the size of that sequence. Then N integers follow, separated by a space. It is guaranteed that all the integers are in the range of long int.

    Output Specification:

    For each test case you should output the median of the two given sequences in a line.

    Sample Input:

    4 11 12 13 14
    5 9 10 15 16 17
    
     

    Sample Output:

    13

    这题考察归并,在归并过程中,到中间数字即可

    #include <iostream>
    using namespace std;
    int arr[1000000] = {0}, arr2[1000000] = {0}, arr3[1000000] = {0};
    int main() {
        int M, N;
        scanf("%d", &M);
        for(int i = 0; i < M; i++)
            scanf("%d", arr+i);
        scanf("%d", &N);
        for(int i = 0; i < N; i++)
            scanf("%d", arr2+i);
        int i = 0, j = 0, k = 0;
        while(i < M && j < N) {
            if(arr[i] < arr2[j]) arr3[k++] = arr[i++];
            else arr3[k++] = arr2[j++];
            if(k == (M + N + 1) / 2)
                 printf("%d
    ", arr3[k - 1]);
        }
        while(i < M) {
            arr3[k++] = arr[i++];
            if(k == (M + N + 1) / 2)
                 printf("%d
    ", arr3[k - 1]);
        }
        while(j < N) {
            arr3[k++] = arr2[j++];
            if(k == (M + N + 1) / 2)
                 printf("%d
    ", arr3[k - 1]);
        }
        return 0;
    }
  • 相关阅读:
    JS,JQuery的扩展方法
    Listbox简单用法
    Button模板,样式
    WPF开发经验
    弹出窗体主体实现事件
    从一知半解到揭晓Java高级语法—泛型
    深入理解Java之装箱与拆箱
    探究 — 二叉搜索树
    深入理解二叉树(超详细)
    二分查找及其变种算法
  • 原文地址:https://www.cnblogs.com/littlepage/p/12248657.html
Copyright © 2011-2022 走看看