zoukankan      html  css  js  c++  java
  • 1136 A Delayed Palindrome (20分)

    Consider a positive integer N written in standard notation with k+1 digits ai​​ as ak​​a1​​a0​​ with 0 for all i and ak​​>0. Then N is palindromic if and only if ai​​=aki​​ for all i. Zero is written 0 and is also palindromic by definition.

    Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. Such number is called a delayed palindrome. (Quoted from https://en.wikipedia.org/wiki/Palindromic_number )

    Given any positive integer, you are supposed to find its paired palindromic number.

    Input Specification:

    Each input file contains one test case which gives a positive integer no more than 1000 digits.

    Output Specification:

    For each test case, print line by line the process of finding the palindromic number. The format of each line is the following:

    A + B = C
    
     

    where A is the original number, B is the reversed A, and C is their sum. A starts being the input number, and this process ends until C becomes a palindromic number -- in this case we print in the last line C is a palindromic number.; or if a palindromic number cannot be found in 10 iterations, print Not found in 10 iterations. instead.

    Sample Input 1:

    97152
    
     

    Sample Output 1:

    97152 + 25179 = 122331
    122331 + 133221 = 255552
    255552 is a palindromic number.
    
     

    Sample Input 2:

    196
    
     

    Sample Output 2:

    196 + 691 = 887
    887 + 788 = 1675
    1675 + 5761 = 7436
    7436 + 6347 = 13783
    13783 + 38731 = 52514
    52514 + 41525 = 94039
    94039 + 93049 = 187088
    187088 + 880781 = 1067869
    1067869 + 9687601 = 10755470
    10755470 + 07455701 = 18211171
    Not found in 10 iterations.

    这题考察大数加法,我们已知一个数字,反转求和,判断是否回文数,10次循环退出。

    #include <iostream>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    string add(string a, string b) {
        int c = 0;
        int i = 0;
        string ans;
        while(i < a.length() && i < b.length()) {
            c += (a[i] - '0' + b[i] - '0');
            ans += (c % 10 + '0');
            c /= 10;
            i++;
        }
        while(i < a.length()) {
            c += (a[i] - '0');
            ans += (c % 10 + '0');
            c /= 10;
            i++;
        }
        while(i < b.length()) {
            c += (b[i] - '0');
            ans += (c % 10 + '0');
            c /= 10;
            i++;
        }
        if(c != 0) ans += (c + '0');
        reverse(ans.begin(), ans.end());
        return ans;
    }
    bool isPalindrome(string s) {
        for(int i = 0; i < s.length() >> 1; i++) 
            if(s[i] != s[s.length() - i - 1]) return false;
        return true;
    }
    int main() {
        char asc[10000], desc[10000];
        string tmp;
        cin >> tmp;
        if(isPalindrome(tmp)) {
            printf("%s is a palindromic number.
    ", tmp.c_str());
            exit(0);
        }
        for(int i = 0; i < 10; i++) {
            strcpy(asc, tmp.c_str());
            strcpy(desc, asc);
            reverse(desc, desc + strlen(desc));
            tmp = add(asc, desc);
            printf("%s + %s = %s
    ", asc, desc, tmp.c_str());
            if(isPalindrome(tmp)) {
                printf("%s is a palindromic number.
    ", tmp.c_str());
                exit(0);
            }
        }
        printf("Not found in 10 iterations.
    ");
        return 0;
    }
  • 相关阅读:
    AcWing 1027. 方格取数 dp
    AcWing 1014. 登山 dp
    acwing 482. 合唱队形 dp
    LeetCode 1463. 摘樱桃II dp
    LeetCode 100. 相同的树 树的遍历
    LeetCode 336. 回文对 哈希
    LeetCode 815. 公交路线 最短路 哈希
    算法问题实战策略 DARPA大挑战 二分
    算法问题实战策略 LUNCHBOX 贪心
    AcWing 1100. 抓住那头牛 BFS
  • 原文地址:https://www.cnblogs.com/littlepage/p/12822792.html
Copyright © 2011-2022 走看看