The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (≤), K (≤) and P (1). The numbers in a line are separated by a space.
Output Specification:
For each case, if the solution exists, output in the format:
N = n[1]^P + ... n[K]^P
where n[i]
(i
= 1, ..., K
) is the i
-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 1, or 1, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { , } is said to be larger than { , } if there exists 1 such that ai=bi for i<L and aL>bL.
If there is no solution, simple output Impossible
.
Sample Input 1:
169 5 2
Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
Sample Input 2:
169 167 3
Sample Output 2:
Impossible
参照柳婼大佬的博客, dfs+剪枝,呀呀呀,dfs老学不会。
#include <iostream> #include <cmath> #include <vector> using namespace std; int N, K, P, maxFacSum = -1; vector<int> v, ans, tmpAns; void init() { int tmp = 0, index = 1; while(tmp <= N) { v.push_back(tmp); tmp = pow(index++, P); } } void dfs(int index, int tmpSum, int tmpK, int facSum) { if(tmpK == K) { if(tmpSum == N && facSum > maxFacSum) { ans = tmpAns; maxFacSum = facSum; } return; } while(index >= 1) { if(tmpSum + v[index] <= N) { tmpAns[tmpK] = index; dfs(index, tmpSum + v[index], tmpK + 1, facSum + index); } if(index == 1) return; index--; } } int main() { scanf("%d%d%d", &N, &K, &P); init(); tmpAns.resize(K); dfs(v.size() - 1, 0, 0, 0); if(maxFacSum == -1) printf("Impossible"); else { printf("%d = ", N); for(int i = 0; i < ans.size(); i++) { if(i != 0) printf(" + "); printf("%d^%d", ans[i], P); } } return 0; }