Number of Connected Components in an Undirected Graph
Given n
nodes labeled from 0
to n - 1
and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.
Example 1:
0 3
| |
1 --- 2 4
Given n = 5
and edges = [[0, 1], [1, 2], [3, 4]]
, return 2
.
Example 2:
0 4
| |
1 --- 2 --- 3
Given n = 5
and edges = [[0, 1], [1, 2], [2, 3], [3, 4]]
, return 1
.
分析:
类似于图像处理中找到物体轮廓的泛洪算法。在本题中,每个点扫一遍,每条边扫一遍,点和边都不重复遍历,复杂度为O(V + E)
代码:
int number(int n, vector<pair<int, int> > edges) { //Store edges with hash map for efficient access unordered_multimap<int, int> hash; for(auto e : edges) { hash.insert(e); hash.insert(make_pair(e.second, e.first)); } //Flood fill algorithm vector<bool> visited(n, false); int number = 0; for(int i = 0; i < n; i++) { if(!visited[i]) { number++; visited[i] = true; queue<int> myq; myq.push(i); while(!myq.empty()) { auto range = hash.equal_range(myq.front()); myq.pop(); auto pos = range.first; while(pos != range.second) { if(!visited[pos->second]) { myq.push(pos->second); visited[pos->second] = true; } pos++; } } } } return number; }