zoukankan      html  css  js  c++  java
  • Python Day38协程,IO模型

    一、介绍:

    1、协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。

    强调:

    1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
    2.
    单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)

    2、对比操作系统控制线程的切换,用户在单线程内控制协程的切换
      优点:
    1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
          2. 单线程内就可以实现并发的效果,最大限度地利用cpu
       缺点:
    1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
            2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

    总结协程特点:

    1. 必须在只有一个单线程里实现并发
    2. 修改共享数据不需加锁
    3. 用户程序里自己保存多个控制流的上下文栈
    4. 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))

    二、 Greenlet

    如果我们在单个线程内有20个任务,要想实现在多个任务之间切换,使用yield生成器的方式过于麻烦(需要先得到初始化一次的生成器,然后再调用send。。。非常麻烦),而使用greenlet模块可以非常简单地实现这20个任务直接的切换

    from greenlet import greenlet
    
    def eat(name):
        print('%s eat 1' %name)
        g2.switch('egon')
        print('%s eat 2' %name)
        g2.switch()
    def play(name):
        print('%s play 1' %name)
        g1.switch()
        print('%s play 2' %name)
    
    g1=greenlet(eat)
    g2=greenlet(play)
    
    g1.switch('egon')#可以在第一次switch时传入参数,以后都不需要

    单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度

    #顺序执行
    import time
    def f1():
        res=1
        for i in range(100000000):
            res+=i
    
    def f2():
        res=1
        for i in range(100000000):
            res*=i
    
    start=time.time()
    f1()
    f2()
    stop=time.time()
    print('run time is %s' %(stop-start)) #10.985628366470337
    
    #切换
    from greenlet import greenlet
    import time
    def f1():
        res=1
        for i in range(100000000):
            res+=i
            g2.switch()
    
    def f2():
        res=1
        for i in range(100000000):
            res*=i
            g1.switch()
    
    start=time.time()
    g1=greenlet(f1)
    g2=greenlet(f2)
    g1.switch()
    stop=time.time()
    print('run time is %s' %(stop-start)) # 52.763017892837524

    reenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题。

    单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务如此,才能提高效率,这就用到了Gevent模块。

    三、Gevent介绍

    Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

    #用法
    g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的
    
    g2=gevent.spawn(func2)
    
    g1.join() #等待g1结束
    
    g2.join() #等待g2结束
    
    #或者上述两步合作一步:gevent.joinall([g1,g2])
    
    g1.value#拿到func1的返回值

    遇到IO阻塞时会自动切换任务

    import gevent
    def eat(name):
        print('%s eat 1' %name)
        gevent.sleep(2)
        print('%s eat 2' %name)
    
    def play(name):
        print('%s play 1' %name)
        gevent.sleep(1)
        print('%s play 2' %name)
    
    
    g1=gevent.spawn(eat,'egon')
    g2=gevent.spawn(play,name='egon')
    g1.join()
    g2.join()
    #或者gevent.joinall([g1,g2])
    print('')

    应用举例

    from gevent import monkey;monkey.patch_all()
    import gevent
    import requests
    import time
    
    def get_page(url):
        print('GET: %s' %url)
        response=requests.get(url)
        if response.status_code == 200:
            print('%d bytes received from %s' %(len(response.text),url))
    
    
    start_time=time.time()
    gevent.joinall([
        gevent.spawn(get_page,'https://www.python.org/'),
        gevent.spawn(get_page,'https://www.yahoo.com/'),
        gevent.spawn(get_page,'https://github.com/'),
    ])
    stop_time=time.time()
    print('run time is %s' %(stop_time-start_time))
    
    协程应用:爬虫

    四、IO模型介绍

        同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?这个问题其实不同的人给出的答案都可能不同,比如wiki,就认为asynchronous IO和non-blocking IO是一个东西。这其实是因为不同的人的知识背景不同,并且在讨论这个问题的时候上下文(context)也不相同。所以,为了更好的回答这个问题,我先限定一下本文的上下文

    五、阻塞IO

    
    

     对应上例中的所面临的可能同时出现的上千甚至上万次的客户端请求,“线程池”或“连接池”或许可以缓解部分压力,但是不能解决所有问题。总之,多线程模型可以方便高效的解决小规模的服务请求,但面对大规模的服务请求,多线程模型也会遇到瓶颈,可以用非阻塞接口来尝试解决这个问题。

     

    
    

    六、 非阻塞IO(non-blocking IO)

    #服务端
    from socket import *
    import time
    s=socket(AF_INET,SOCK_STREAM)
    s.bind(('127.0.0.1',8080))
    s.listen(5)
    s.setblocking(False) #设置socket的接口为非阻塞
    conn_l=[]
    del_l=[]
    while True:
        try:
            conn,addr=s.accept()
            conn_l.append(conn)
        except BlockingIOError:
            print(conn_l)
            for conn in conn_l:
                try:
                    data=conn.recv(1024)
                    if not data:
                        del_l.append(conn)
                        continue
                    conn.send(data.upper())
                except BlockingIOError:
                    pass
                except ConnectionResetError:
                    del_l.append(conn)
    
            for conn in del_l:
                conn_l.remove(conn)
                conn.close()
            del_l=[]
    
    #客户端
    from socket import *
    c=socket(AF_INET,SOCK_STREAM)
    c.connect(('127.0.0.1',8080))
    
    while True:
        msg=input('>>: ')
        if not msg:continue
        c.send(msg.encode('utf-8'))
        data=c.recv(1024)
        print(data.decode('utf-8'))
    
    非阻塞IO实例

        但是非阻塞IO模型绝不被推荐。

        我们不能否则其优点:能够在等待任务完成的时间里干其他活了(包括提交其他任务,也就是 “后台” 可以有多个任务在“”同时“”执行)。

        但是也难掩其缺点:

    #1. 循环调用recv()将大幅度推高CPU占用率;这也是我们在代码中留一句time.sleep(2)的原因,否则在低配主机下极容易出现卡机情况
    #2. 任务完成的响应延迟增大了,因为每过一段时间才去轮询一次read操作,而任务可能在两次轮询之间的任意时间完成。这会导致整体数据吞吐量的降低。

        此外,在这个方案中recv()更多的是起到检测“操作是否完成”的作用,实际操作系统提供了更为高效的检测“操作是否完成“作用的接口,例如select()多路复用模式,可以一次检测多个连接是否活跃

     
     
     
  • 相关阅读:
    How many things do you really about .net framwork?
    Things that will impact concurrency & capacity behavior of WCF service (with simoultaneous client requests/connections)
    3 ways to do WCF Message Exchange Model
    3 ways to create WCF Client(ChannelFactory)
    Do not apply "using" for the clientWCF Client
    Understanding WCF Session
    Using FaultContract
    3 ways to do WCF Concurrency Management(Single, Multiple, and Reentrant and How to do with Throttling)
    webview使用技巧汇总
    反序列化网易miniblog json格式数据 原创 create by lee
  • 原文地址:https://www.cnblogs.com/liuduo/p/7682936.html
Copyright © 2011-2022 走看看