zoukankan      html  css  js  c++  java
  • pandas数组(pandas Series)-(1)

    导入pandas

    import pandas as pd
    countries = ['Albania', 'Algeria', 'Andorra', 'Angola', 'Antigua and Barbuda',
                 'Argentina', 'Armenia', 'Australia', 'Austria', 'Azerbaijan',
                 'Bahamas', 'Bahrain', 'Bangladesh', 'Barbados', 'Belarus',
                 'Belgium', 'Belize', 'Benin', 'Bhutan', 'Bolivia']
    
    life_expectancy_values = [74.7,  75. ,  83.4,  57.6,  74.6,  75.4,  72.3,  81.5,  80.2,
                              70.3,  72.1,  76.4,  68.1,  75.2,  69.8,  79.4,  70.8,  62.7,
                              67.3,  70.6]
    
    gdp_values = [ 1681.61390973,   2155.48523109,  21495.80508273,    562.98768478,
                  13495.1274663 ,   9388.68852258,   1424.19056199,  24765.54890176,
                  27036.48733192,   1945.63754911,  21721.61840978,  13373.21993972,
                    483.97086804,   9783.98417323,   2253.46411147,  25034.66692293,
                   3680.91642923,    366.04496652,   1175.92638695,   1132.21387981]

    #将普通数组转换为pandas数组

      life_expectancy = pd.Series(life_expectancy_values)

      gdp = pd.Series(gdp_values)

    pandas数组和numpy数组有很多一样的操作:

    (1) 截取部分

    print life_expectancy[0]
    
    # 结果:
    74.7 print gdp[3:6]
    # 结果:
    3 562.987685 4 13495.127466 5 9388.688523 dtype: float64

    (2) 循环:

    for country_life_expectancy in life_expectancy:
      print 'Examining life expectancy {}'.format(country_life_expectancy)

    # 结果
    Examining life expectancy 74.7
    Examining life expectancy 75.0
    Examining life expectancy 83.4
    Examining life expectancy 57.6
    Examining life expectancy 74.6
    Examining life expectancy 75.4
    ...
    Examining life expectancy 67.3
    Examining life expectancy 70.6

    (3) 常用函数:

    print life_expectancy.mean()   # 求平均数
    # 结果
    72.87
    print life_expectancy.std() # 求标准差
    # 结果
    6.21399947487
    print gdp.max()          # 求最大值
    # 结果
    27036.4873319
    print gdp.sum()                # 求和 
    # 结果
    182957.59833

    (4) 向量化运算:

    a = pd.Series([1, 2, 3, 4])
    b = pd.Series([1, 2, 1, 2])
      
    print a + b
    # 结果
    0    2
    1    4
    2    4
    3    6
    dtype: int64
    
    print a * 2
    # 结果
    0    2
    1    4
    2    6
    3    8
    dtype: int64
    
    print a >= 3
    # 结果
    0    False
    1    False
    2     True
    3     True
    dtype: bool
    
    print a[a >= 3]
    # 结果
    2    3
    3    4
    dtype: int64
  • 相关阅读:
    vim的额外功能
    vi的使用
    文件与文件系统的压缩
    其他常用的压缩与备份工具
    光盘写入工具
    XFS 文件系统的备份与还原
    打包命令:tar
    Linux 系统常见的压缩命令
    Windows10修改DNS
    Linux 磁盘与文件系统管理
  • 原文地址:https://www.cnblogs.com/liulangmao/p/9161916.html
Copyright © 2011-2022 走看看