zoukankan      html  css  js  c++  java
  • 一起学ORBSLAM2(3)system框架搭建

    转载请注明原创地址:https://blog.csdn.net/qq_30356613/article/category/6897125

    接着上一期的一起学ORBSLAM2继续,只不过上一期已经是几个月前了,由于这一段时间忙或者毕业答辩的事情,所以没有时间更新博客,望各位见谅,现在到暑假了,没什么事情,接着之前的工作继续,坚持过好每一天,共勉! 

    ORB-SLAM2是萨拉格萨大学做到一个开源SLAM方案,源代码上传到github上边:https://github.com/raulmur/ORB_SLAM2
    相关效果视频网站为:http://webdiis.unizar.es/~raulmur/orbslam/
    ORB-SLAM2包含了用三种方案进行同步追踪与地图构建,分别为以kinect为视觉传感器的RGBD-SLAM方案、以单目摄像机为视觉传感器的mono-slam方案、以双目摄像机为视觉传感器的stereo-slam方案。三种方案有均已ORB特征点作为图像构建SLAM的基础,因此此工程名ORB-SLAM。
    接下来我们将以RGB-D SLAM作为例子来介绍ORB-SLAM开源方案中所用到的方法
    RGB-D SLAM分为以下三个线程,第一个是图像追踪线程(主线程)作为视觉里程计的Tracking线程,第二个为临时地图构建LocalMapping线程,第三个为回环检测LoopClosing线程,第四个为观测器线程Viewer(根据参数而定,可有可无)在接下来的几个章节中,我们将分别就这些分线程进行介绍ORB-SLAM。
    此讲中我们主要分析ORB-SLAM2如何与Kinect进行数据传输和系统线程构建的方法及其代码分析。
    ORB-SLAM2与Kinect的数据传输有许多中,我们在这里讲述其在ROS操作系统上进行数据传输的实例。该工程中开发者在example中ROS文件夹下举例说明了如何将该工程运行在机器人操作系统中(ROS),我们将从这里的main开始讲起。即ros_rgbd.cc文件
    代码如下:

    int main(int argc, char **argv)
    {
    //初始化ROS系统 
    ros::init(argc, argv, "RGBD");
    //ROS启动函数
    ros::start();
    //检测给定参数数量是否完整
    if(argc != 3)
    {
    cerr << endl << "Usage: rosrun ORB_SLAM2 RGBD path_to_vocabulary path_to_settings" << endl; 
    ros::shutdown();
    return 1;
    } 
    // Create SLAM system. It initializes all system threads and gets ready to process frames.
    // 创建SLAM系统,初始化所有系统线程并准备进程帧
    ORB_SLAM2::System SLAM(argv[1],argv[2],ORB_SLAM2::System::RGBD,true);
    //定义捕获图像的对象
    ImageGrabber igb(&SLAM);
    //建立ROS节点
    ros::NodeHandle nh;
    //Subscriber滤波器作为ROS消息的最顶层,不能够将其他滤波器的输出作为其输入
    message_filters::Subscriber<sensor_msgs::Image> rgb_sub(nh, "/kinect2/hd/image_color_rect", 1);
    message_filters::Subscriber<sensor_msgs::Image> depth_sub(nh, "/kinect2/hd/image_depth_rect", 1);
    //The message_filters::sync_policies::ApproximateTime policy uses an adaptive algorithm to match messages based on their timestamp.
    //下边两条指令是为了将rgb_sub和depth_sub进行数据对齐,滤掉不对齐的帧数
    typedef message_filters::sync_policies::ApproximateTime<sensor_msgs::Image, sensor_msgs::Image> sync_pol;
    message_filters::Synchronizer<sync_pol> sync(sync_pol(10), rgb_sub,depth_sub);
    //采用registerCallback()方法,注册回调函数ImageGrabber::GrabRGBD。
    sync.registerCallback(boost::bind(&ImageGrabber::GrabRGBD,&igb,_1,_2));
    //此函数用于ROS不断回调节点mageGrabber::GrabRGBD函数
    ros::spin();
    // Stop all threads 停止所有线程
    SLAM.Shutdown();
    // Save camera trajectory
    SLAM.SaveKeyFrameTrajectoryTUM("KeyFrameTrajectory.txt");
    ros::shutdown();
    return 0;
    }

    主函数中使用ROS编程的风格将该SLAM系统作为ROS上的一个节点来运行在ROS上面,通过订阅Kinect发布的话题,来获取Kinect上采集的图像信息。
    具体代码含义已经在代码中给出,后面通过不断的回调ImageGrabber类中的成员函数GrabRGBD()来读取Kinect数据,从而完成整个系统的运行。

    class ImageGrabber
    {
    public:
    ImageGrabber(ORB_SLAM2::System* pSLAM):mpSLAM(pSLAM){}
    void GrabRGBD(const sensor_msgs::ImageConstPtr& msgRGB,const sensor_msgs::ImageConstPtr& msgD);
    ORB_SLAM2::System* mpSLAM;
    };
    void ImageGrabber::GrabRGBD(const sensor_msgs::ImageConstPtr& msgRGB,const sensor_msgs::ImageConstPtr& msgD)
    {
    // Copy the ros image message to cv::Mat.
    cv_bridge::CvImageConstPtr cv_ptrRGB;
    try
    {
    cv_ptrRGB = cv_bridge::toCvShare(msgRGB);
    }
    catch (cv_bridge::Exception& e)
    {
    ROS_ERROR("cv_bridge exception: %s", e.what());
    return;
    }
    cv_bridge::CvImageConstPtr cv_ptrD;
    try
    {
    cv_ptrD = cv_bridge::toCvShare(msgD);
    }
    catch (cv_bridge::Exception& e)
    {
    ROS_ERROR("cv_bridge exception: %s", e.what());
    return;
    }
    mpSLAM->TrackRGBD(cv_ptrRGB->image,cv_ptrD->image,cv_ptrRGB->header.stamp.toSec()); //该成员函数的核心代码
    }

    以上类和代码主要就是将采集到的数据检测是否有异常,然后将采集到的数据给system,供整个系统使用。
    system构建及使用在system.cc中实现,如下:

    //strVocFile指向字典的路径,strSettingsFile指向参数配置文件的路径,sensor所使用传感器的种类,bUseViewer是否打开实时观测
    System::System(const string &strVocFile, const string &strSettingsFile, const eSensor sensor,
    const bool bUseViewer):mSensor(sensor), mpViewer(static_cast<Viewer*>(NULL)), mbReset(false),mbActivateLocalizationMode(false),
    mbDeactivateLocalizationMode(false)
    {
    // Output welcome message
    cout << endl <<
    "ORB-SLAM2 Copyright (C) 2014-2016 Raul Mur-Artal, University of Zaragoza." << endl <<
    "This program comes with ABSOLUTELY NO WARRANTY;" << endl <<
    "This is free software, and you are welcome to redistribute it" << endl <<
    "under certain conditions. See LICENSE.txt." << endl << endl;
    cout << "Input sensor was set to: ";
    if(mSensor==MONOCULAR)
    cout << "Monocular" << endl;
    else if(mSensor==STEREO)
    cout << "Stereo" << endl;
    else if(mSensor==RGBD)
    cout << "RGB-D" << endl;
    //Check settings file 将配置文件读入到内存中,存储到fsSettings变量中
    cv::FileStorage fsSettings(strSettingsFile.c_str(), cv::FileStorage::READ);
    if(!fsSettings.isOpened())
    {
    cerr << "Failed to open settings file at: " << strSettingsFile << endl;
    exit(-1);
    }
    //Load ORB Vocabulary 
    cout << endl << "Loading ORB Vocabulary. This could take a while..." << endl;
    mpVocabulary = new ORBVocabulary();
    bool bVocLoad = mpVocabulary->loadFromTextFile(strVocFile); //将字典加载到mpVocabulary中
    if(!bVocLoad)
    {
    cerr << "Wrong path to vocabulary. " << endl;
    cerr << "Falied to open at: " << strVocFile << endl;
    exit(-1);
    }
    cout << "Vocabulary loaded!" << endl << endl;
    //Create KeyFrame Database 创建关键帧数据集
    mpKeyFrameDatabase = new KeyFrameDatabase(*mpVocabulary);
    //Create the Map 创建地图
    mpMap = new Map();
    //Create Drawers. These are used by the Viewer 创建观测器 帧的观测器和地图观测器
    mpFrameDrawer = new FrameDrawer(mpMap);
    mpMapDrawer = new MapDrawer(mpMap, strSettingsFile);
    //Initialize the Tracking thread 初始化跟踪线程器
    //(it will live in the main thread of execution, the one that called this constructor) 它运行在主线程中,这个线程被称作constructor
    mpTracker = new Tracking(this, mpVocabulary, mpFrameDrawer, mpMapDrawer,
    mpMap, mpKeyFrameDatabase, strSettingsFile, mSensor);
    //Initialize the Local Mapping thread and launch 初始化当地地图线程并启动
    mpLocalMapper = new LocalMapping(mpMap, mSensor==MONOCULAR);
    mptLocalMapping = new thread(&ORB_SLAM2::LocalMapping::Run,mpLocalMapper);
    //Initialize the Loop Closing thread and launch 初始化回环检测线程并启动
    mpLoopCloser = new LoopClosing(mpMap, mpKeyFrameDatabase, mpVocabulary, mSensor!=MONOCULAR);
    mptLoopClosing = new thread(&ORB_SLAM2::LoopClosing::Run, mpLoopCloser);
    //Initialize the Viewer thread and launch 初始化观测器线程并启动
    if(bUseViewer)
    {
    mpViewer = new Viewer(this, mpFrameDrawer,mpMapDrawer,mpTracker,strSettingsFile);
    mptViewer = new thread(&Viewer::Run, mpViewer);
    mpTracker->SetViewer(mpViewer);
    }
    //Set pointers between threads 各个线程之间建立联系
    mpTracker->SetLocalMapper(mpLocalMapper);
    mpTracker->SetLoopClosing(mpLoopCloser);
    mpLocalMapper->SetTracker(mpTracker);
    mpLocalMapper->SetLoopCloser(mpLoopCloser);
    mpLoopCloser->SetTracker(mpTracker);
    mpLoopCloser->SetLocalMapper(mpLocalMapper);
    }

    此函数为system的构造函数,构造函数中主要做了以一下工作
    (1)检测传感器的种类,
    (2)将配置文件和词典读入内存中,
    (3)建立线程,分为四个,一个是主线程(tracking线程),第二个为局部建图线程(mptLocalMapping线程),第三个为回环检测线程(LoopClosing线程),第四个为实时显示线程(根据bUseViewer而定)
    (4)各线程之间建立联系及通信
    在main函数中节点的主要工作是不断回调成员函数ImageGrabber::GrabRGBD,而在该成员函数中除了验证一下传输数据是否正常并将ROS图片转变为cv::Mat格式外主要的工作量在不断调用SLAM->TrackRGBD(parameter)函数,那么该函数的具体工作在什么呢?如下所示函数:

    cv::Mat System::TrackRGBD(const cv::Mat &im, const cv::Mat &depthmap, const double ×tamp)
    {
    if(mSensor!=RGBD)
    {
    cerr << "ERROR: you called TrackRGBD but input sensor was not set to RGBD." << endl;
    exit(-1);
    } 
    // Check mode change
    //核查运行模式是否改变
    {
    unique_lock<mutex> lock(mMutexMode); //使用mMutexMode锁
    //停用局部建图模式
    if(mbActivateLocalizationMode)
    {
    mpLocalMapper->RequestStop();
    // Wait until Local Mapping has effectively stopped 等待直到局部地图构建线程被暂停
    while(!mpLocalMapper->isStopped())
    {
    usleep(1000);
    }
    mpTracker->InformOnlyTracking(true); //仅追踪线程开启
    mbActivateLocalizationMode = false;
    }
    //重新激活局部建图模式
    if(mbDeactivateLocalizationMode)
    {
    mpTracker->InformOnlyTracking(false); //仅追踪线程关闭
    mpLocalMapper->Release(); //局部地图构建线程释放
    mbDeactivateLocalizationMode = false;
    }
    }
    // Check reset
    // 检查复位
    {
    unique_lock<mutex> lock(mMutexReset); //使用mMutexReset锁
    if(mbReset)
    {
    mpTracker->Reset();
    mbReset = false;
    }
    }
    cv::Mat Tcw = mpTracker->GrabImageRGBD(im,depthmap,timestamp);
    unique_lock<mutex> lock2(mMutexState);
    mTrackingState = mpTracker->mState;
    mTrackedMapPoints = mpTracker->mCurrentFrame.mvpMapPoints;
    mTrackedKeyPointsUn = mpTracker->mCurrentFrame.mvKeysUn;
    return Tcw;
    }

    该函数主要的工作:
    (1)检测输入传感器
    (2)核查运行模式是否改变(主要就是核查mbActivateLocalizationMode和mbDeactivateLocalizationMode)
    (3)检查是否需要复位
    (4)计算变换矩阵T(GrabImageRGBD() 函数来计算)这一步将是主要的工作量所在
    至于GrabImageRGBD()函数的具体实现就是线程Tracking中的内容了,我们将在下一节中详细介绍线程Tracking,希望大家多多关注。

  • 相关阅读:
    运行hexo提示/usr/bin/env: node: 没有那个文件或目录
    安装cuda时 提示toolkit installation failed using unsupported compiler解决方法
    使用caffe自动测试模型top5的结果
    配置caffe的python环境时make pycaffe提示fatal error: numpy/arrayobject.h No such file or directory解决方法
    error: library dfftpack has Fortran sources but no Fortran compiler found解决方法
    ubuntu硬盘安装卡在探测文件系统
    win7+ubuntu双系统中卸载ubuntu方法
    深度学习入门教程UFLDL学习实验笔记三:主成分分析PCA与白化whitening
    深度学习入门教程UFLDL学习实验笔记二:使用向量化对MNIST数据集做稀疏自编码
    深度学习入门教程UFLDL学习实验笔记一:稀疏自编码器
  • 原文地址:https://www.cnblogs.com/liumantang/p/11830389.html
Copyright © 2011-2022 走看看