zoukankan      html  css  js  c++  java
  • POJ 2559 Largest Rectangle in a Histogram -- 动态规划

    题目地址:http://poj.org/problem?id=2559

    Description

    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:

    Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

    Input

    The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1<=n<=100000. Then follow n integers h1,...,hn, where 0<=hi<=1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

    Output

    For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

    Sample Input

    7 2 1 4 5 1 3 3
    4 1000 1000 1000 1000
    0
    

    Sample Output

    8
    4000
    


    如果确定了长方形的左端点L和右端点R,那么最大可能的高度就是min{hi|L <= i < R}。

    L[i] = (j <= i并且h[j-1] < h[i]的最大的j)

    R[i] = (j > i并且h[j] < h[i]的最小的j)


    #include <stdio.h>
    
    #define MAX_N 100000
    
    int n;
    int h[MAX_N];
    int L[MAX_N], R[MAX_N];
    int stack[MAX_N];
    
    long long max(long long a, long long b){
    	return (a > b) ? a : b;
    }
    
    void solve(){
    	//计算L
    	long long ans = 0;
    	int t = 0;
    	int i;
    	for (i = 0; i < n; ++i){
    		while (t > 0 && h[stack[t-1]] >= h[i]) t--;
    		L[i] = (t == 0) ? 0 : (stack[t-1] + 1);
    		stack[t++] = i;
    	}
    
    	//计算R
    	t = 0;
    	for (i = n - 1; i >= 0; --i){
    		while (t > 0 && h[stack[t-1]] >= h[i]) t--;
    		R[i] = (t == 0) ? n : stack[t-1];
    		stack[t++] = i;
    	}
    
    	for (i = 0; i < n; ++i){
    		ans = max(ans, (long long)h[i] * (R[i] - L[i]));
    	}
    	printf("%lld
    ", ans);
    }
    
    int main(void){
    	int i;
    	while (scanf("%d", &n) != EOF && n != 0){
    		for (i = 0; i < n; ++i)
    			scanf("%d", &h[i]);
    		solve();
    	}
    
    	return 0;
    }
    


    参考资料:挑战程序设计竞赛(第2版)

  • 相关阅读:
    五.Flink实时项目电商用户行为分析之订单支付实时监控
    四.Flink实时项目电商用户行为分析之恶意登录监控
    三.Flink实时项目电商用户行为分析之市场营销商业指标统计分析
    二.Flink实时项目电商用户行为之实时流量统计
    一.Flink实时项目电商用户行为分析之实时热门商品统计
    Flink 流处理API之实现UDF函数——更细粒度的控制流
    二.Flink 流处理API之Transform
    5组-Alpha冲刺-1/6
    5组 需求分析报告
    5组 团队展示
  • 原文地址:https://www.cnblogs.com/liushaobo/p/4373745.html
Copyright © 2011-2022 走看看