zoukankan      html  css  js  c++  java
  • POJ 2559 Largest Rectangle in a Histogram -- 动态规划

    题目地址:http://poj.org/problem?id=2559

    Description

    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:

    Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

    Input

    The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1<=n<=100000. Then follow n integers h1,...,hn, where 0<=hi<=1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

    Output

    For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

    Sample Input

    7 2 1 4 5 1 3 3
    4 1000 1000 1000 1000
    0
    

    Sample Output

    8
    4000
    


    如果确定了长方形的左端点L和右端点R,那么最大可能的高度就是min{hi|L <= i < R}。

    L[i] = (j <= i并且h[j-1] < h[i]的最大的j)

    R[i] = (j > i并且h[j] < h[i]的最小的j)


    #include <stdio.h>
    
    #define MAX_N 100000
    
    int n;
    int h[MAX_N];
    int L[MAX_N], R[MAX_N];
    int stack[MAX_N];
    
    long long max(long long a, long long b){
    	return (a > b) ? a : b;
    }
    
    void solve(){
    	//计算L
    	long long ans = 0;
    	int t = 0;
    	int i;
    	for (i = 0; i < n; ++i){
    		while (t > 0 && h[stack[t-1]] >= h[i]) t--;
    		L[i] = (t == 0) ? 0 : (stack[t-1] + 1);
    		stack[t++] = i;
    	}
    
    	//计算R
    	t = 0;
    	for (i = n - 1; i >= 0; --i){
    		while (t > 0 && h[stack[t-1]] >= h[i]) t--;
    		R[i] = (t == 0) ? n : stack[t-1];
    		stack[t++] = i;
    	}
    
    	for (i = 0; i < n; ++i){
    		ans = max(ans, (long long)h[i] * (R[i] - L[i]));
    	}
    	printf("%lld
    ", ans);
    }
    
    int main(void){
    	int i;
    	while (scanf("%d", &n) != EOF && n != 0){
    		for (i = 0; i < n; ++i)
    			scanf("%d", &h[i]);
    		solve();
    	}
    
    	return 0;
    }
    


    参考资料:挑战程序设计竞赛(第2版)

  • 相关阅读:
    CentOS7 64位下MySQL5.7安装与配置
    Linux CentOS7.0下JAVA安装和配置环境变量
    在MySQL中使用explain查询SQL的执行计划
    ionic3中使用自定义配置
    RabbitMQ发布订阅实战-实现延时重试队列
    springboot 项目mybatis plus 设置 jdbcTypeForNull (oracle数据库需配置JdbcType.NULL, 默认是Other)
    Python之Mysql及SQLAlchemy操作总结
    数据库分库分表思路
    RPC框架实践之:Apache Thrift
    vue使用watch 观察路由变化,重新获取内容
  • 原文地址:https://www.cnblogs.com/liushaobo/p/4373745.html
Copyright © 2011-2022 走看看