zoukankan      html  css  js  c++  java
  • 09:散列表

    1、Word文档中的单词拼写检查功能

    2、散列表用的是数组支持按照下标随机访问数据的特性,所以散列表其实就是数组的一种扩展,由数组演化而来。

    散列思想==》与数组的下标形成一一映射,所以利用数组支持根据下标随机访问的时候,时间复杂度是 O(1) 这一特性

    散列表用的就是数组支持按照下标随机访问的时候,时间复杂度是 O(1) 的特性。我们通过散列函数把元素的键值映射为下标,然后将数据存储在数组中对应下标的位置。当我们按照键值查询元素时,我们用同样的散列函数,将键值转化数组下标,从对应的数组下标的位置取数据。

    3、散列函数==》

    散列函数计算得到的散列值是一个非负整数;==》数组下标是从0开始的

    如果 key1 = key2,那 hash(key1) == hash(key2);

    如果 key1 ≠ key2,那 hash(key1) ≠ hash(key2)。==》散列冲突

    4、散列冲突==》开放寻址法;链表法

    开放寻址法==》核心思想是,如果出现了散列冲突,我们就重新探测一个空闲位置,将其插入。==》线性探测  当我们往散列表中插入数据时,如果某个数据经过散列函数散列之后,存储位置已经被占用了,我们就从当前位置开始,依次往后查找,看是否有空闲位置,直到找到为止。在散列表中查找元素的过程有点儿类似插入过程。我们通过散列函数求出要查找元素的键值对应的散列值,然后比较数组中下标为散列值的元素和要查找的元素。如果相等,则说明就是我们要找的元素;否则就顺序往后依次查找。如果遍历到数组中的空闲位置,还没有找到,就说明要查找的元素并没有在散列表中。

    将删除的元素,特殊标记为 deleted。当线性探测查找的时候,遇到标记为 deleted 的空间,并不是停下来,而是继续往下探测。

    二次探测==》跟线性探测很像,线性探测每次探测的步长是 1,那它探测的下标序列就是 hash(key)+0,hash(key)+1,hash(key)+2……而二次探测探测的步长就变成了原来的“二次方”,也就是说,它探测的下标序列就是 hash(key)+0,hash(key)+12,hash(key)+22……

    双重散列==》不仅要使用一个散列函数。我们使用一组散列函数 hash1(key),hash2(key),hash3(key)……我们先用第一个散列函数,如果计算得到的存储位置已经被占用,再用第二个散列函数,依次类推,直到找到空闲的存储位置。

    5、装载因子==》填入表中的元素个数/散列表的长度

    6、链表法==》在散列表中,每个“桶(bucket)”或者“槽(slot)”会对应一条链表,所有散列值相同的元素我们都放到相同槽位对应的链表中。

    7、假设有10万条URL访问日志,如何按照访问次数给URL排序==》遍历 10 万条数据,以 URL 为 key,访问次数为 value,存入散列表,同时记录下访问次数的最大值 K,时间复杂度 O(N)。如果 K 不是很大,可以使用桶排序,时间复杂度 O(N)。如果 K 非常大(比如大于 10 万),就使用快速排序,复杂度 O(NlogN)。

    8、有两个字符串数组,每个数组大约有10万条字符串,如何快速找出两个数组中相同的字符串==》以第一个字符串数组构建散列表,key 为字符串,value 为出现次数。再遍历第二个字符串数组,以字符串为 key 在散列表中查找,如果 value 大于零,说明存在相同字符串。时间复杂度 O(N)。

    9、如何设计散列函数==》散列函数设计的好坏,决定了散列表冲突的概率大小,也直接决定了散列表的性能。散列函数的设计不能太复杂。过于复杂的散列函数,势必会消耗很多计算时间,也就间接地影响到散列表的性能。其次,散列函数生成的值要尽可能随机并且均匀分布,这样才能避免或者最小化散列冲突,而且即便出现冲突,散列到每个槽里的数据也会比较平均,不会出现某个槽内数据特别多的情况。

    散列函数的设计方法==》直接寻址法、平方取中法、折叠法、随机数法

    10、装载因子==》装载因子越大,说明散列表中的元素越多,空闲位置越少,散列冲突的概率就越大。针对散列表,当装载因子过大时,我们也可以进行动态扩容,重新申请一个更大的散列表,将数据搬移到这个新散列表中。针对散列表的扩容,数据搬移操作要复杂很多。因为散列表的大小变了,数据的存储位置也变了,所以我们需要通过散列函数重新计算每个数据的存储位置。

    如果我们对空间消耗非常敏感,我们可以在装载因子小于某个值之后,启动动态缩容。当然,如果我们更加在意执行效率,能够容忍多消耗一点内存空间,那就可以不用费劲来缩容了。

    11、避免低效扩容==》为了解决一次性扩容耗时过多的情况,我们可以将扩容操作穿插在插入操作的过程中,分批完成。当装载因子触达阈值之后,我们只申请新空间,但并不将老的数据搬移到新散列表中。当有新数据要插入时,我们将新数据插入新散列表中,并且从老的散列表中拿出一个数据放入到新散列表。每次插入一个数据到散列表,我们都重复上面的过程。经过多次插入操作之后,老的散列表中的数据就一点一点全部搬移到新散列表中了。这样没有了集中的一次性数据搬移,插入操作就都变得很快了。  Redis

    这期间的查询操作怎么来做呢?对于查询操作,为了兼容了新、老散列表中的数据,我们先从新散列表中查找,如果没有找到,再去老的散列表中查找。通过这样均摊的方法,将一次性扩容的代价,均摊到多次插入操作中,就避免了一次性扩容耗时过多的情况。这种实现方式,任何情况下,插入一个数据的时间复杂度都是 O(1)。

    12、如何选择冲突解决方法==》Java 中 LinkedHashMap 就采用了链表法解决冲突,ThreadLocalMap 是通过线性探测的开放寻址法来解决冲突

    开放寻址法==》散列表中的数据都存储在数组中,可以有效地利用 CPU 缓存加快查询速度。而且,这种方法实现的散列表,序列化起来比较简单。

    用开放寻址法解决冲突的散列表,删除数据的时候比较麻烦,需要特殊标记已经删除掉的数据。而且,在开放寻址法中,所有的数据都存储在一个数组中,比起链表法来说,冲突的代价更高。所以,使用开放寻址法解决冲突的散列表,装载因子的上限不能太大。这也导致这种方法比链表法更浪费内存空间。

    当数据量比较小、装载因子小的时候,适合采用开放寻址法。这也是 Java 中的ThreadLocalMap使用开放寻址法解决散列冲突的原因。

    链表法==》链表法对内存的利用率比开放寻址法要高。因为链表结点可以在需要的时候再创建,并不需要像开放寻址法那样事先申请好。

    链表法比起开放寻址法,对大装载因子的容忍度更高。开放寻址法只能适用装载因子小于 1 的情况。接近 1 时,就可能会有大量的散列冲突,导致大量的探测、再散列等,性能会下降很多。但是对于链表法来说,只要散列函数的值随机均匀,即便装载因子变成 10,也就是链表的长度变长了而已,虽然查找效率有所下降,但是比起顺序查找还是快很多。

    链表因为要存储指针,所以对于比较小的对象的存储,是比较消耗内存的,还有可能会让内存的消耗翻倍。而且,因为链表中的结点是零散分布在内存中的,不是连续的,所以对 CPU 缓存是不友好的,这方面对于执行效率也有一定的影响。

    基于链表的散列冲突处理方法比较适合存储大对象、大数据量的散列表,而且,比起开放寻址法,它更加灵活,支持更多的优化策略,比如用红黑树代替链表。

    13、HashMap==》

    初始大小==》默认初始大小是16

    装载因子和动态扩容==》最大装载因子默认是0.75  每次扩容都会扩容为原来的两倍

    散列冲突解决方法==》链表法  链表长度太长时,链表就转换为红黑树  当红黑树结点个数少于 8 个的时候,又会将红黑树转化为链表。因为在数据量较小的情况下,红黑树要维护平衡,比起链表来,性能上的优势并不明显

    散列函数

    14、散列表和链表组合使用==》LRU缓存淘汰算法;Redis有序集合(跳表+散列表)

    在Redis有序集合中,每个成员对象有两个重要的属性,key(键值)和score(分值)

    Redis有序集合的操作==》

    添加一个成员对象

    按照键值来删除一个成员对象

    按照键值来查找一个成员对象

    按照分值区间查找数据

    按照分值从小到大排序成员变量

    ==》按照分值将成员对象组织成跳表的结构,再按照键值构建一个散列表

    LinkedHashMap==》通过散列表和链表组合在一起实现的。它不仅支持按照插入顺序遍历数据,还支持按照访问顺序来遍历数据。LinkedHashMap 是通过双向链表和散列表这两种数据结构组合实现的。LinkedHashMap 中的“Linked”实际上是指的是双向链表,并非指用链表法解决散列冲突。

  • 相关阅读:
    博客园界面部分优化
    jQuery获取Select选择的Text和 Value
    java开发各层对象含义
    接口与抽象类的区别(完整描述)
    Map相关知识总结
    html引用外部js和css
    RDD内存迭代原理(Resilient Distributed Datasets)---弹性分布式数据集
    spark高可用集群搭建及运行测试
    spark集群的简单测试和基础命令的使用
    spark集群搭建
  • 原文地址:https://www.cnblogs.com/liushoudong/p/13509407.html
Copyright © 2011-2022 走看看