zoukankan      html  css  js  c++  java
  • python-day43--多表查询

    一、多表连接查询:       #重点:外链接语法

    准备表

    #建表
    create table department(
    id int,
    name varchar(20) 
    );
    
    create table employee(
    id int primary key auto_increment,
    name varchar(20),
    sex enum('male','female') not null default 'male',
    age int,
    dep_id int
    );
    
    #插入数据
    insert into department values
    (200,'技术'),
    (201,'人力资源'),
    (202,'销售'),
    (203,'运营');
    
    insert into employee(name,sex,age,dep_id) values
    ('egon','male',18,200),
    ('alex','female',48,201),
    ('wupeiqi','male',38,201),
    ('yuanhao','female',28,202),
    ('liwenzhou','male',18,200),
    ('jingliyang','female',18,204)
    ;
    
    
    #查看表结构和数据
    mysql> desc department;
    +-------+-------------+------+-----+---------+-------+
    | Field | Type | Null | Key | Default | Extra |
    +-------+-------------+------+-----+---------+-------+
    | id | int(11) | YES | | NULL | |
    | name | varchar(20) | YES | | NULL | |
    +-------+-------------+------+-----+---------+-------+
    
    mysql> desc employee;
    +--------+-----------------------+------+-----+---------+----------------+
    | Field | Type | Null | Key | Default | Extra |
    +--------+-----------------------+------+-----+---------+----------------+
    | id | int(11) | NO | PRI | NULL | auto_increment |
    | name | varchar(20) | YES | | NULL | |
    | sex | enum('male','female') | NO | | male | |
    | age | int(11) | YES | | NULL | |
    | dep_id | int(11) | YES | | NULL | |
    +--------+-----------------------+------+-----+---------+----------------+
    
    mysql> select * from department;
    +------+--------------+
    | id | name |
    +------+--------------+
    | 200 | 技术 |
    | 201 | 人力资源 |
    | 202 | 销售 |
    | 203 | 运营 |
    +------+--------------+
    
    mysql> select * from employee;
    +----+------------+--------+------+--------+
    | id | name | sex | age | dep_id |
    +----+------------+--------+------+--------+
    | 1 | egon | male | 18 | 200 |
    | 2 | alex | female | 48 | 201 |
    | 3 | wupeiqi | male | 38 | 201 |
    | 4 | yuanhao | female | 28 | 202 |
    | 5 | liwenzhou | male | 18 | 200 |
    | 6 | jingliyang | female | 18 | 204 |
    +----+------------+--------+------+--------+
    View Code

    1 .交叉连接:不适用任何匹配条件(没意义)。生成笛卡尔积

    select * from department,employee;    #笛卡尔积
    mysql> select * from employee,department;
    +----+------------+--------+------+--------+------+--------------+
    | id | name       | sex    | age  | dep_id | id   | name         |
    +----+------------+--------+------+--------+------+--------------+
    |  1 | egon       | male   |   18 |    200 |  200 | 技术         |
    |  1 | egon       | male   |   18 |    200 |  201 | 人力资源     |
    |  1 | egon       | male   |   18 |    200 |  202 | 销售         |
    |  1 | egon       | male   |   18 |    200 |  203 | 运营         |
    |  2 | alex       | female |   48 |    201 |  200 | 技术         |
    |  2 | alex       | female |   48 |    201 |  201 | 人力资源     |
    |  2 | alex       | female |   48 |    201 |  202 | 销售         |
    |  2 | alex       | female |   48 |    201 |  203 | 运营         |
    |  3 | wupeiqi    | male   |   38 |    201 |  200 | 技术         |
    |  3 | wupeiqi    | male   |   38 |    201 |  201 | 人力资源     |
    |  3 | wupeiqi    | male   |   38 |    201 |  202 | 销售         |
    |  3 | wupeiqi    | male   |   38 |    201 |  203 | 运营         |
    |  4 | yuanhao    | female |   28 |    202 |  200 | 技术         |
    |  4 | yuanhao    | female |   28 |    202 |  201 | 人力资源     |
    |  4 | yuanhao    | female |   28 |    202 |  202 | 销售         |
    |  4 | yuanhao    | female |   28 |    202 |  203 | 运营         |
    |  5 | liwenzhou  | male   |   18 |    200 |  200 | 技术         |
    |  5 | liwenzhou  | male   |   18 |    200 |  201 | 人力资源     |
    |  5 | liwenzhou  | male   |   18 |    200 |  202 | 销售         |
    |  5 | liwenzhou  | male   |   18 |    200 |  203 | 运营         |
    |  6 | jingliyang | female |   18 |    204 |  200 | 技术         |
    |  6 | jingliyang | female |   18 |    204 |  201 | 人力资源     |
    |  6 | jingliyang | female |   18 |    204 |  202 | 销售         |
    |  6 | jingliyang | female |   18 |    204 |  203 | 运营         |
    +----+------------+--------+------+--------+------+--------------+
    View Code

    2.内链接(只连接匹配的行):按照on条件只两张表的相同的部分,连接成一张虚拟的表
    select * from employee inner join department on department.id=employee.dep_id;
    select * from department inner join employee on department.id=employee.dep_id;
    select * from employee,department where department.id=employee.dep_id;
    在内连接两张表的时候不推荐使用where,推荐 inner join,因为join on 在where之前执行

    mysql> select * from employee inner join department on department.id=employee.dep_id;
    +----+-----------+--------+------+--------+------+--------------+
    | id | name      | sex    | age  | dep_id | id   | name         |
    +----+-----------+--------+------+--------+------+--------------+
    |  1 | egon      | male   |   18 |    200 |  200 | 技术         |
    |  2 | alex      | female |   48 |    201 |  201 | 人力资源     |
    |  3 | wupeiqi   | male   |   38 |    201 |  201 | 人力资源     |
    |  4 | yuanhao   | female |   28 |    202 |  202 | 销售         |
    |  5 | liwenzhou | male   |   18 |    200 |  200 | 技术         |
    +----+-----------+--------+------+--------+------+--------------+
    5 rows in set (0.01 sec)
    View Code

    3.左链接(外链接之左连接:优先显示左表全部记录):在按照on的条件取到两张表共同部分的基础上,保留左表的记录
    select * from employee left join department on department.id=employee.dep_id;

    mysql> select * from employee left join department on department.id=employee.dep_id;
    +----+------------+--------+------+--------+------+--------------+
    | id | name       | sex    | age  | dep_id | id   | name         |
    +----+------------+--------+------+--------+------+--------------+
    |  1 | egon       | male   |   18 |    200 |  200 | 技术         |
    |  5 | liwenzhou  | male   |   18 |    200 |  200 | 技术         |
    |  2 | alex       | female |   48 |    201 |  201 | 人力资源     |
    |  3 | wupeiqi    | male   |   38 |    201 |  201 | 人力资源     |
    |  4 | yuanhao    | female |   28 |    202 |  202 | 销售         |
    |  6 | jingliyang | female |   18 |    204 | NULL | NULL         |
    +----+------------+--------+------+--------+------+--------------+
    6 rows in set (0.00 sec)
    View Code

    4.右链接(外链接之右连接:优先显示右表全部记录):在按照on的条件取到两张表共同部分的基础上,保留右表的记录
    select * from employee right join department on department.id=employee.dep_id;

    mysql> select * from employee right join department on department.id=employee.dep_id;
    +------+-----------+--------+------+--------+------+--------------+
    | id   | name      | sex    | age  | dep_id | id   | name         |
    +------+-----------+--------+------+--------+------+--------------+
    |    1 | egon      | male   |   18 |    200 |  200 | 技术         |
    |    2 | alex      | female |   48 |    201 |  201 | 人力资源     |
    |    3 | wupeiqi   | male   |   38 |    201 |  201 | 人力资源     |
    |    4 | yuanhao   | female |   28 |    202 |  202 | 销售         |
    |    5 | liwenzhou | male   |   18 |    200 |  200 | 技术         |
    | NULL | NULL      | NULL   | NULL |   NULL |  203 | 运营         |
    +------+-----------+--------+------+--------+------+--------------+
    6 rows in set (0.00 sec)
    View Code

    5.full join:(注意在sql语句中没有full join)
    全链接(全外连接:显示左右两个表全部记录):union
    select * from employee left join department on department.id=employee.dep_id
    union
    select * from employee right join department on department.id=employee.dep_id;

    mysql> select * from employee left join department on department.id=employee.dep_id
        -> union
        -> select * from employee right join department on department.id=employee.dep_id;
    +------+------------+--------+------+--------+------+--------------+
    | id   | name       | sex    | age  | dep_id | id   | name         |
    +------+------------+--------+------+--------+------+--------------+
    |    1 | egon       | male   |   18 |    200 |  200 | 技术         |
    |    5 | liwenzhou  | male   |   18 |    200 |  200 | 技术         |
    |    2 | alex       | female |   48 |    201 |  201 | 人力资源     |
    |    3 | wupeiqi    | male   |   38 |    201 |  201 | 人力资源     |
    |    4 | yuanhao    | female |   28 |    202 |  202 | 销售         |
    |    6 | jingliyang | female |   18 |    204 | NULL | NULL         |
    | NULL | NULL       | NULL   | NULL |   NULL |  203 | 运营         |
    +------+------------+--------+------+--------+------+--------------+
    7 rows in set (0.00 sec)
    View Code

    #注意 union与union all的区别:union会去掉相同的纪录

    6.子查询:
      1:子查询是将一个查询语句嵌套在另一个查询语句中。
      2:内层查询语句的查询结果,可以为外层查询语句提供查询条件。
      3:子查询中可以包含:IN、NOT IN、ANY、ALL、EXISTS 和 NOT EXISTS等关键字
      4:还可以包含比较运算符:= 、 !=、> 、<等

    1 带IN关键字的子查询:
    #查询employee表,但dep_id必须在department表中出现过
    select * from employee
        where dep_id in
            (select id from department);
    mysql> select * from employee where dep_id in (select id from department where name in ('技术','销售'));
    +----+-----------+--------+------+--------+
    | id | name      | sex    | age  | dep_id |
    +----+-----------+--------+------+--------+
    |  1 | egon      | male   |   18 |    200 |
    |  4 | yuanhao   | female |   28 |    202 |
    |  5 | liwenzhou | male   |   18 |    200 |
    +----+-----------+--------+------+--------+
    3 rows in set (0.02 sec)
    View Code
    2 带比较运算符的子查询:
    #比较运算符:=、!=、>、>=、<、<=、<>
    #查询平均年龄在25岁以上的部门名
    select name from department where id in (
    select dep_id from employee group by dep_id having avg(age) > 25
    );
    
    +--------------+
    | name         |
    +--------------+
    | 人力资源     |
    | 销售         |
    +--------------+
    2 rows in set (0.00 sec)
    
    #查看技术部员工姓名
    select name from employee where dep_id = (select id from department where name='技术');
    
    +-----------+
    | name      |
    +-----------+
    | egon      |
    | liwenzhou |
    +-----------+
    2 rows in set (0.00 sec)
    
    #查看小于2人的部门名
    select name from department where id in (
    select dep_id from employee group by dep_id having count(id) < 2
    )
    union
    select name from department where id not in (select distinct dep_id from employee);
    
    +--------+
    | name   |
    +--------+
    | 销售   |
    | 运营   |
    +--------+
    2 rows in set (0.01 sec)
    
    
    #提取空部门                              #没有人的部门
    select * from department where id not in (select distinct dep_id from employee);
    
    +------+--------+
    | id   | name   |
    +------+--------+
    |  203 | 运营   |
    +------+--------+
    1 row in set (0.00 sec)
    
    或者:
    select name from department where id in
    (
    select dep_id from employee group by dep_id having count(id) < 2
    union
    select id from department where id not in (select distinct dep_id from employee)
    );
    
    +--------+
    | name   |
    +--------+
    | 销售   |
    | 运营   |
    +--------+
    2 rows in set (0.00 sec)
    View Code
    3 带EXISTS关键字的子查询:
    exists关字键字表示存在。在使用EXISTS关键字时,内层查询语句不返回查询的记录。
    而是返回一个真假值。True或False
    当返回True时,外层查询语句将进行查询;当返回值为False时,外层查询语句不进行查询
    mysql> select * from employee where exists (select id from department where name='hahahahah');
    Empty set (0.00 sec)
    
    mysql> select * from employee where exists (select id from department where name='技术');
    +----+------------+--------+------+--------+
    | id | name       | sex    | age  | dep_id |
    +----+------------+--------+------+--------+
    |  1 | egon       | male   |   18 |    200 |
    |  2 | alex       | female |   48 |    201 |
    |  3 | wupeiqi    | male   |   38 |    201 |
    |  4 | yuanhao    | female |   28 |    202 |
    |  5 | liwenzhou  | male   |   18 |    200 |
    |  6 | jingliyang | female |   18 |    204 |
    +----+------------+--------+------+--------+
    6 rows in set (0.00 sec)
    View Code

    7.!!!重中之重:务必搞清楚sql逻辑查询语句的执行顺序

    SELECT语句关键字的定义顺序
    
    SELECT DISTINCT <select_list>
    FROM <left_table>
    <join_type> JOIN <right_table>
    ON <join_condition>
    WHERE <where_condition>
    GROUP BY <group_by_list>
    HAVING <having_condition>
    ORDER BY <order_by_condition>
    LIMIT <limit_number>
    SELECT语句关键字的执行顺序
    
    (7)     SELECT 
    (8)     DISTINCT <select_list>
    (1)     FROM <left_table>
    (3)     <join_type> JOIN <right_table>
    (2)     ON <join_condition>
    (4)     WHERE <where_condition>
    (5)     GROUP BY <group_by_list>
    (6)     HAVING <having_condition>
    (9)     ORDER BY <order_by_condition>
    (10)    LIMIT <limit_number>
    三 准备表和数据
    1. 新建一个测试数据库TestDB;
    create database TestDB;
    2.创建测试表table1和table2;
    
    CREATE TABLE table1
     (
         customer_id VARCHAR(10) NOT NULL,
         city VARCHAR(10) NOT NULL,
         PRIMARY KEY(customer_id)
     )ENGINE=INNODB DEFAULT CHARSET=UTF8;
    
     CREATE TABLE table2
     (
         order_id INT NOT NULL auto_increment,
         customer_id VARCHAR(10),
         PRIMARY KEY(order_id)
     )ENGINE=INNODB DEFAULT CHARSET=UTF8;
    
    3.插入测试数据;
    
     INSERT INTO table1(customer_id,city) VALUES('163','hangzhou');
     INSERT INTO table1(customer_id,city) VALUES('9you','shanghai');
     INSERT INTO table1(customer_id,city) VALUES('tx','hangzhou');
     INSERT INTO table1(customer_id,city) VALUES('baidu','hangzhou');
    
     INSERT INTO table2(customer_id) VALUES('163');
     INSERT INTO table2(customer_id) VALUES('163');
     INSERT INTO table2(customer_id) VALUES('9you');
     INSERT INTO table2(customer_id) VALUES('9you');
     INSERT INTO table2(customer_id) VALUES('9you');
     INSERT INTO table2(customer_id) VALUES('tx');
     INSERT INTO table2(customer_id) VALUES(NULL);
    
    准备工作做完以后,table1和table2看起来应该像下面这样:
    
    mysql> select * from table1;
     +-------------+----------+
     | customer_id | city     |
     +-------------+----------+
     | 163         | hangzhou |
     | 9you        | shanghai |
     | baidu       | hangzhou |
     | tx          | hangzhou |
     +-------------+----------+
     4 rows in set (0.00 sec)
    
     mysql> select * from table2;
     +----------+-------------+
     | order_id | customer_id |
     +----------+-------------+
     |        1 | 163         |
     |        2 | 163         |
     |        3 | 9you        |
     |        4 | 9you        |
     |        5 | 9you        |
     |        6 | tx          |
     |        7 | NULL        |
     +----------+-------------+
     7 rows in set (0.00 sec)
    
    
    四 准备SQL逻辑查询测试语句
    
    #查询来自杭州,并且订单数少于2的客户。
     SELECT a.customer_id, COUNT(b.order_id) as total_orders
     FROM table1 AS a
     LEFT JOIN table2 AS b
     ON a.customer_id = b.customer_id
     WHERE a.city = 'hangzhou'
     GROUP BY a.customer_id
     HAVING count(b.order_id) < 2
     ORDER BY total_orders DESC;
    
    
    五 执行顺序分析
    在这些SQL语句的执行过程中,都会产生一个虚拟表,用来保存SQL语句的执行结果(这是重点),我现在就来跟踪这个虚拟表的变化,得到最终的查询结果的过程,来分析整个SQL逻辑查询的执行顺序和过程。
    执行FROM语句
    第一步,执行FROM语句。我们首先需要知道最开始从哪个表开始的,这就是FROM告诉我们的。现在有了<left_table>和<right_table>两个表,我们到底从哪个表开始,还是从两个表进行某种联系以后再开始呢?它们之间如何产生联系呢?——笛卡尔积
    关于什么是笛卡尔积,请自行Google补脑。经过FROM语句对两个表执行笛卡尔积,会得到一个虚拟表,暂且叫VT1(vitual table 1),内容如下:
    
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 9you        | shanghai |        1 | 163         |
    | baidu       | hangzhou |        1 | 163         |
    | tx          | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        2 | 163         |
    | baidu       | hangzhou |        2 | 163         |
    | tx          | hangzhou |        2 | 163         |
    | 163         | hangzhou |        3 | 9you        |
    | 9you        | shanghai |        3 | 9you        |
    | baidu       | hangzhou |        3 | 9you        |
    | tx          | hangzhou |        3 | 9you        |
    | 163         | hangzhou |        4 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | baidu       | hangzhou |        4 | 9you        |
    | tx          | hangzhou |        4 | 9you        |
    | 163         | hangzhou |        5 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | baidu       | hangzhou |        5 | 9you        |
    | tx          | hangzhou |        5 | 9you        |
    | 163         | hangzhou |        6 | tx          |
    | 9you        | shanghai |        6 | tx          |
    | baidu       | hangzhou |        6 | tx          |
    | tx          | hangzhou |        6 | tx          |
    | 163         | hangzhou |        7 | NULL        |
    | 9you        | shanghai |        7 | NULL        |
    | baidu       | hangzhou |        7 | NULL        |
    | tx          | hangzhou |        7 | NULL        |
    +-------------+----------+----------+-------------+
    
    总共有28(table1的记录条数 * table2的记录条数)条记录。这就是VT1的结果,接下来的操作就在VT1的基础上进行。
    执行ON过滤
    执行完笛卡尔积以后,接着就进行ON a.customer_id = b.customer_id条件过滤,根据ON中指定的条件,去掉那些不符合条件的数据,得到VT2表,内容如下:
    
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    +-------------+----------+----------+-------------+
    
    VT2就是经过ON条件筛选以后得到的有用数据,而接下来的操作将在VT2的基础上继续进行。
    添加外部行
    这一步只有在连接类型为OUTER JOIN时才发生,如LEFT OUTER JOIN、RIGHT OUTER JOIN和FULL OUTER JOIN。在大多数的时候,我们都是会省略掉OUTER关键字的,但OUTER表示的就是外部行的概念。
    LEFT OUTER JOIN把左表记为保留表,得到的结果为:
    
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    | baidu       | hangzhou |     NULL | NULL        |
    +-------------+----------+----------+-------------+
    
    RIGHT OUTER JOIN把右表记为保留表,得到的结果为:
    
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    | NULL        | NULL     |        7 | NULL        |
    +-------------+----------+----------+-------------+
    
    FULL OUTER JOIN把左右表都作为保留表,得到的结果为:
    
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    | baidu       | hangzhou |     NULL | NULL        |
    | NULL        | NULL     |        7 | NULL        |
    +-------------+----------+----------+-------------+
    
    添加外部行的工作就是在VT2表的基础上添加保留表中被过滤条件过滤掉的数据,非保留表中的数据被赋予NULL值,最后生成虚拟表VT3。
    由于我在准备的测试SQL查询逻辑语句中使用的是LEFT JOIN,过滤掉了以下这条数据:
    | baidu       | hangzhou |     NULL | NULL        |
    现在就把这条数据添加到VT2表中,得到的VT3表如下:
    
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    | baidu       | hangzhou |     NULL | NULL        |
    +-------------+----------+----------+-------------+
    
    接下来的操作都会在该VT3表上进行。
    执行WHERE过滤
    对添加外部行得到的VT3进行WHERE过滤,只有符合<where_condition>的记录才会输出到虚拟表VT4中。当我们执行WHERE a.city = 'hangzhou'的时候,就会得到以下内容,并存在虚拟表VT4中:
    
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | tx          | hangzhou |        6 | tx          |
    | baidu       | hangzhou |     NULL | NULL        |
    +-------------+----------+----------+-------------+
    
    但是在使用WHERE子句时,需要注意以下两点:
    由于数据还没有分组,因此现在还不能在WHERE过滤器中使用where_condition=MIN(col)这类对分组统计的过滤;
    由于还没有进行列的选取操作,因此在SELECT中使用列的别名也是不被允许的,如:SELECT city as c FROM t WHERE c='shanghai';是不允许出现的。
    执行GROUP BY分组
    GROU BY子句主要是对使用WHERE子句得到的虚拟表进行分组操作。我们执行测试语句中的GROUP BY a.customer_id,就会得到以下内容(默认只显示组内第一条):
    
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | baidu       | hangzhou |     NULL | NULL        |
    | tx          | hangzhou |        6 | tx          |
    +-------------+----------+----------+-------------+
    
    得到的内容会存入虚拟表VT5中,此时,我们就得到了一个VT5虚拟表,接下来的操作都会在该表上完成。
    执行HAVING过滤
    HAVING子句主要和GROUP BY子句配合使用,对分组得到的VT5虚拟表进行条件过滤。当我执行测试语句中的HAVING count(b.order_id) < 2时,将得到以下内容:
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | baidu       | hangzhou |     NULL | NULL        |
    | tx          | hangzhou |        6 | tx          |
    +-------------+----------+----------+-------------+
    这就是虚拟表VT6。
    SELECT列表
    现在才会执行到SELECT子句,不要以为SELECT子句被写在第一行,就是第一个被执行的。
    我们执行测试语句中的SELECT a.customer_id, COUNT(b.order_id) as total_orders,从虚拟表VT6中选择出我们需要的内容。我们将得到以下内容:
    +-------------+--------------+
    | customer_id | total_orders |
    +-------------+--------------+
    | baidu       |            0 |
    | tx          |            1 |
    +-------------+--------------+
    还没有完,这只是虚拟表VT7。
    执行DISTINCT子句
    如果在查询中指定了DISTINCT子句,则会创建一张内存临时表(如果内存放不下,就需要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表VT7是一样的,不同的是对进行DISTINCT操作的列增加了一个唯一索引,以此来除重复数据。
    由于我的测试SQL语句中并没有使用DISTINCT,所以,在该查询中,这一步不会生成一个虚拟表。
    执行ORDER BY子句
    对虚拟表中的内容按照指定的列进行排序,然后返回一个新的虚拟表,我们执行测试SQL语句中的ORDER BY total_orders DESC,就会得到以下内容:
    +-------------+--------------+
    | customer_id | total_orders |
    +-------------+--------------+
    | tx          |            1 |
    | baidu       |            0 |
    +-------------+--------------+
    可以看到这是对total_orders列进行降序排列的。上述结果会存储在VT8中。
    执行LIMIT子句
    LIMIT子句从上一步得到的VT8虚拟表中选出从指定位置开始的指定行数据。对于没有应用ORDER BY的LIMIT子句,得到的结果同样是无序的,所以,很多时候,我们都会看到LIMIT子句会和ORDER BY子句一起使用。
    MySQL数据库的LIMIT支持如下形式的选择:
    LIMIT n, m
    表示从第n条记录开始选择m条记录。而很多开发人员喜欢使用该语句来解决分页问题。对于小数据,使用LIMIT子句没有任何问题,当数据量非常大的时候,使用LIMIT n, m是非常低效的。因为LIMIT的机制是每次都是从头开始扫描,如果需要从第60万行开始,读取3条数据,就需要先扫描定位到60万行,然后再进行读取,而扫描的过程是一个非常低效的过程。所以,对于大数据处理时,是非常有必要在应用层建立一定的缓存机制(现在的大数据处理,大都使用缓存)
    View Code
  • 相关阅读:
    jQuery插件开发之定宽输出
    全国所有省市县地理坐标Json格式
    diff/merge configuration in TFS
    How to accelerate your VPC 2007
    TechNet Magazine/TechNet杂志
    net helpmsg get error message for error id in cmd script
    devenv.exe /DebugExe debug unitcase
    ZoomIt for demo
    diskpart to deal with driver letter changed after reboot in Virtual Machine
    几个关于web开发资源的站点
  • 原文地址:https://www.cnblogs.com/liuwei0824/p/7498048.html
Copyright © 2011-2022 走看看