1.生成一个服从多元正态分布的数组
multivariate_normal(mean, cov, size=None, check_valid=None, tol=None)
mean:均值,维度为1,必选参数;
cov:协方差矩阵,必选参数;
size: 指定生成矩阵的维度,若size=(1, 1, 2),则输出的矩阵的 shape 即形状为 1X1X2XN(N为mean的长度);
check_valid:可取值 warn,raise以及ignore;
tol:检查协方差矩阵奇异值时的公差,float类型;
2.生成一个多元正态分布
import numpy as np import scipy.stats as st import matplotlib.pylab as plt st.multivariate_normal()
可用方法
pdf(x, mean=None, cov=1) :概率密度函数
logpdf(x, mean=None, cov=1) :概率密度函数日志
rvs(mean=None, cov=1) :从多元正态分布中随机抽取样本
entropy() :计算多元法线的微分熵