zoukankan      html  css  js  c++  java
  • uva 113 Power of Cryptography

    Power of Cryptography 

    Background

    Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers modulo functions of these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be of only theoretical interest.

    This problem involves the efficient computation of integer roots of numbers.

    The Problem

    Given an integer tex2html_wrap_inline32 and an integer tex2html_wrap_inline34 you are to write a program that determines tex2html_wrap_inline36 , the positive tex2html_wrap_inline38 root of p. In this problem, given such integers n and p, p will always be of the form tex2html_wrap_inline48 for an integer k (this integer is what your program must find).

    The Input

    The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs tex2html_wrap_inline56 , tex2html_wrap_inline58 and there exists an integer k, tex2html_wrap_inline62 such that tex2html_wrap_inline64 .

    The Output

    For each integer pair n and p the value tex2html_wrap_inline36 should be printed, i.e., the number k such that tex2html_wrap_inline64 .

    Sample Input

    2
    16
    3
    27
    7
    4357186184021382204544

    Sample Output

    4 3 1234

    这道题目里面 p, n 没有超过 double 范围,所以。。。。水题,典型的纸老虎。

    拙劣的代码
     1 #include <iostream>
     2 #include <cstdlib>
     3 #include <cstdio>
     4 #include <cmath>
     5 
     6 using namespace std;
     7 
     8 int main(void)
     9 {
    10     double n , p;
    11     int k;
    12 
    13 #ifndef ONLINE_JUDGE
    14     freopen("in", "r", stdin);
    15 #endif
    16 
    17     while (cin >> n >> p)
    18     {
    19         k = floor(pow(p, 1 / n) + 0.5);
    20         cout << k << endl;
    21     }
    22 
    23     return 0;
    24 }
  • 相关阅读:
    AG-Admin微服务框架入门
    使用node-webkit包装浏览器
    转 使用Docker部署 spring-boot maven应用
    转 docker的下载与安装
    Maven基本理解
    物联网垂直态势分析
    纯技术商业价值
    OpenLayers 3 入门教程
    转 从红帽、GitHub和Docker看开源商业模式的进阶
    关于 Total Commander 的标签(Tab)功能【转】
  • 原文地址:https://www.cnblogs.com/liuxueyang/p/2759715.html
Copyright © 2011-2022 走看看