zoukankan      html  css  js  c++  java
  • UVA 12651 Triangles

    You will be given N points on a circle. You must write a program to determine how many distinct
    equilateral triangles can be constructed using the given points as vertices.
    The gure below illustrates an example: (a) shows a set of points, determined by the lengths of the
    circular arcs that have adjacent points as extremes; and (b) shows the two triangles which can be built
    with these points.
    Input
    The input contains several test cases. The rst line of a test case contains an integer N , the number
    of points given. The second line contains N integers Xi , representing the lengths of the circular arcs
    between two consecutive points in the circle: for 1  i  (N   1), Xi
    represents the length of the arc
    between between points i and i + 1; XN represents the length of the arc between points N and 1.
    Output
    For each test case your program must output a single line, containing a single integer, the number of
    distinct equilateral triangles that can be constructed using the given points as vertices.
    Restrictions
     3  N  10
    5
     1  Xi  10
    3


    , for 1  i  N
    Sample Input
    8
    4 2 4 2 2 6 2 2
    6
    3 4 2 1 5 3
    Sample Output
    2

    1

    #include <iostream>
    #include <stdio.h>
    #include <queue>
    #include <stdio.h>
    #include <string.h>
    #include <vector>
    #include <queue>
    #include <set>
    #include <algorithm>
    #include <map>
    #include <stack>
    #include <math.h>
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    using namespace std ;
    typedef long long LL ;
    const int M=200008 ;
    int num[M] ,N ,Len ,num2[M];
    int L_sum[M] ,R_sum[M] ;
    int judge_Left(int id){
       int Left=id;
       int Right=Min(id+N-1,N+N) ;
       int mid ;
       while(Left<=Right){
            mid=(Left+Right)>>1 ;
            if(L_sum[mid]-L_sum[id-1]==Len)
                 return 1 ;
            else if(L_sum[mid]-L_sum[id-1]>Len)
                 Right=mid-1 ;
            else
                 Left=mid+1 ;
       }
       return 0 ;
    }
    int judge_Right(int id){
       id=N+1-id ;
       id++ ;
       int Left=id;
       int Right=Min(id+N-1,N+N) ;
       int mid ;
       while(Left<=Right){
            mid=(Left+Right)>>1 ;
            if(R_sum[mid]-R_sum[id-1]==Len)
                 return 1 ;
            else if(R_sum[mid]-R_sum[id-1]>Len)
                 Right=mid-1 ;
            else
                 Left=mid+1 ;
       }
       return 0 ;
    }
    int main(){
       int s  ,ans ;
       while(scanf("%d",&N)!=EOF){
            s=0 ;
            ans=0 ;
            L_sum[0]=0 ;
            for(int i=1;i<=N;i++){
                scanf("%d",&num[i]) ;
                num2[N-i+1]=num[i] ;
                s+=num[i] ;
                L_sum[i]=L_sum[i-1]+num[i] ;
            }
            if(s%3){
                puts("0") ;
                continue ;
            }
            Len=s/3 ;
            for(int i=1;i<=N;i++)
                L_sum[i+N]=L_sum[i+N-1]+num[i] ;
            R_sum[0]=0 ;
            for(int i=1;i<=N;i++)
                 R_sum[i]=R_sum[i-1]+num2[i] ;
            for(int i=1;i<=N;i++)
                 R_sum[i+N]=R_sum[i+N-1]+num2[i] ;
            for(int i=1;i<=N;i++){
                if(judge_Right(i)&&judge_Left(i))
                    ans++ ;
            }
            printf("%d
    ",ans/3) ;
       }
       return 0 ;
    }

  • 相关阅读:
    2015上阅读计划
    《梦断代码》读书笔记 第2篇
    四则运算3
    求数组中最大子数组的和(一维)
    四则运算2—单元测试
    四则运算2
    《梦断代码》读书笔记 第1篇
    四组运算2(思路)
    四则运算1
    读书笔记
  • 原文地址:https://www.cnblogs.com/liyangtianmen/p/3381672.html
Copyright © 2011-2022 走看看