zoukankan      html  css  js  c++  java
  • poj 3230(初始化。。动态规划)

    Travel
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 4353   Accepted: 1817

    Description

    One traveler travels among cities. He has to pay for this while he can get some incomes.

    Now there are n cities, and the traveler has m days for traveling. Everyday he may go to another city or stay there and pay some money. When he come to a city ,he can get some money. Even when he stays in the city, he can also get the next day's income. All the incomes may change everyday. The traveler always starts from city 1.

    Now is your turn to find the best way for traveling to maximize the total income.

    Input

    There are multiple cases.

    The first line of one case is two positive integers, n and m .n is the number of cities, and m is the number of traveling days. There follows n lines, one line n integers. The j integer in the i line is the expense of traveling from city i to city j. If i equals to j it means the expense of staying in the city.

    After an empty line there are m lines, one line has n integers. The j integer in the i line means the income from city j in the i day.

    The input is finished with two zeros.
    n,m<100.

    Output

    You must print one line for each case. It is the max income.

    Sample Input

    3 3
    3 1 2
    2 3 1
    1 3 2
    
    2 4 3
    4 3 2
    3 4 2
    
    0 0

    Sample Output

    8

    Hint

    In the Sample, the traveler can first go to city 2, then city 1, and finish his travel in city 1. The total income is:
    -1+4-2+4-1+4=8;
    挺简单的,,但是又坑在初始化了,,
    题意:题目有点绕,输入n,m n代表城市数,m代表天数
    然后是一个 n*n的矩阵 expense[i][j]代表从第i个城市到第j个城市的花费
    然后是一个 m*n的矩阵 income[i][j]代表第i天在第j个城市的收入.
    分析:dp[i][j]代表第i天在第j个城市前i天能够获得的最大income(income可能为负)
    那么 dp[i][j] = max(dp[i][j],dp[i-1][k]-express[k][i]+income[i][j])
    #include<stdio.h>
    #include<iostream>
    #include<string.h>
    #include<math.h>
    #include<algorithm>
    using namespace std;
    const int N=105;
    int express[N][N];
    int income[N][N];
    int dp[N][N];
    int main()
    {
        int n,m;
        while(scanf("%d%d",&n,&m)!=EOF,n+m){
            for(int i=1;i<=n;i++){
                for(int j=1;j<=n;j++){
                    scanf("%d",&express[i][j]);
                }
            }
            for(int i=1;i<=m;i++){
                for(int j=1;j<=n;j++){
                    scanf("%d",&income[i][j]);
                }
            }
            for(int i=1;i<=n;++i)
                dp[0][i]=-1000000000;
            dp[0][1]=0;///初始化第0天在第1个城市为0
            for(int i=1;i<=m;i++){ ///枚举天数
                for(int j=1;j<=n;j++){ ///枚举第i天
                    dp[i][j]=dp[i-1][1]+income[i][j]-express[1][j];
                    for(int k=1;k<=n;k++){ ///枚举i-1天
                        dp[i][j]=max(dp[i][j],dp[i-1][k]-express[k][j]+income[i][j]);
                    }
                }
            }
            int ans = -99999999999;
            for(int i=1;i<=n;i++){
                ans = max(ans,dp[m][i]);
            }
            printf("%d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    Windows操作系统_怎样查看本机MAC地址
    Oracle数据库学习笔记_Windows环境安装部署Oracle12c
    Oracle数据库学习笔记_Windows环境卸载Oracle12c_补充版
    Oracle数据库学习笔记_Windows环境卸载Oracle12c
    如何配置管理员权限并删除文件
    mysql 区间锁 对于没有索引 非唯一索引 唯一索引 各种情况
    insert into select 堵塞update
    监控持有sql和被堵塞的sql
    insert into select * from 锁表
    SELECT /*!40001 SQL_NO_CACHE */ * INTO OUTFILE '/tmp/ClientActionTrack2015112511.txt' 不堵塞事务
  • 原文地址:https://www.cnblogs.com/liyinggang/p/5428409.html
Copyright © 2011-2022 走看看