zoukankan      html  css  js  c++  java
  • hdu 4990(数学,等比数列求和)

    Reading comprehension

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1270    Accepted Submission(s): 512


    Problem Description
    Read the program below carefully then answer the question.
    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include<iostream>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include<vector>

    const int MAX=100000*2;
    const int INF=1e9;

    int main()
    {
      int n,m,ans,i;
      while(scanf("%d%d",&n,&m)!=EOF)
      {
        ans=0;
        for(i=1;i<=n;i++)
        {
          if(i&1)ans=(ans*2+1)%m;
          else ans=ans*2%m;
        }
        printf("%d ",ans);
      }
      return 0;
    }
     
    Input
    Multi test cases,each line will contain two integers n and m. Process to end of file.
    [Technical Specification]
    1<=n, m <= 1000000000
     
    Output
    For each case,output an integer,represents the output of above program.
     
    Sample Input
    1 10 3 100
     
    Sample Output
    1 5
     
    Source
     
    这个题就是需要用log(n)解决上面的程序问题。
    然后我们找奇数项的关系。
    f[2k+1] = 2*f[2k] + 1 (k>=1)
    f[2k] = 2*f[2k-1]
    代入可得 f[2k+1] = 4*f[2k-1]+1 => bi = 4*bi-1+1
    bi = 4*bi-1+1
    bi-1 = 4*bi-2+1
    ..
    b3 = 4*b2 + 1
    b2 = 4*b1 +1
    可得bk = 1+4+4^2+....+4^k-1
    k与n之间的映射是 k = (n+1)/2 然后带入模板算就OK。偶数的话乘2.
    #include <cstdio>
    #include<iostream>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include<vector>
    typedef long long LL;
    
    LL mod;
    LL pow_mod(LL a,LL n){
        LL ans = 1;
        while(n){
            if(n&1) ans=ans*a%mod;
            a= a*a%mod;
            n>>=1;
        }
        return ans;
    }
     LL cal(LL p,LL n){  ///这里是递归求解等比数列模板 1+p+p^2...+p^n
        if(n==0) return 1;
        if(n&1){///(1+p+p^2+....+p^(n/2))*(1+p^(n/2+1));
             return (1+pow_mod(p,n/2+1))*cal(p,n/2)%mod;
        }
        else { ///(1+p+p^2+....+p^(n/2-1))*(1+p^(n/2+1))+p^(n/2);
             return (pow_mod(p,n/2)+(1+pow_mod(p,n/2+1))*cal(p,n/2-1))%mod;
        }
    }
    
    int main()
    {
        LL n;
        while(scanf("%lld%lld",&n,&mod)!=EOF)
        {
            if(n==1&&mod==1) {
                printf("0
    ");
                continue;
            }
            LL k = (n+1)/2;
            LL ans = cal(4,k-1);
            if(n&1){
                printf("%lld
    ",ans);
            }else {
                printf("%lld
    ",ans*2%mod);
            }
        }
        return 0;
    }
  • 相关阅读:
    读书笔记——吴军《态度》
    JZYZOJ1237 教授的测试 dfs
    NOI1999 JZYZOJ1289 棋盘分割 dp 方差的数学结论
    [JZYZOJ 1288][洛谷 1005] NOIP2007 矩阵取数 dp 高精度
    POJ 3904 JZYZOJ 1202 Sky Code 莫比乌斯反演 组合数
    POJ2157 Check the difficulty of problems 概率DP
    HDU3853 LOOPS 期望DP 简单
    Codeforces 148D. Bag of mice 概率dp
    POJ3071 Football 概率DP 简单
    HDU4405 Aeroplane chess 飞行棋 期望dp 简单
  • 原文地址:https://www.cnblogs.com/liyinggang/p/5632477.html
Copyright © 2011-2022 走看看