zoukankan      html  css  js  c++  java
  • poj 1077(BFS预处理+康托展开)

    Eight
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 29935   Accepted: 13029   Special Judge

    Description

    The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:
     1  2  3  4 
    
    5 6 7 8
    9 10 11 12
    13 14 15 x

    where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
     1  2  3  4    1  2  3  4    1  2  3  4    1  2  3  4 
    
    5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
    9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
    13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
    r-> d-> r->

    The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.

    Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
    frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).

    In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
    arrangement.

    Input

    You will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle
     1  2  3 
    
    x 4 6
    7 5 8

    is described by this list:

    1 2 3 x 4 6 7 5 8

    Output

    You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line.

    Sample Input

     2  3  4  1  5  x  7  6  8 

    Sample Output

    ullddrurdllurdruldr

    题意:经典八数码
    题解:预处理终点到所有状态的路径。康拓展开保存状态
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <queue>
    using namespace std;
    const int N = 450000;
    int fab[] = {1,1,2,6,24,120,720,5040,40320};
    bool vis[N];
    struct Node{
        int a[15];
        int Hash;
        int _x; ///x所在位置
    };
    struct Way{
        char c;
        int pre;
    }way[N];
    int contor(Node s){
        int sum = 0;
        for(int i=9;i>=1;i--){
            int cnt = 0;
            for(int j=i-1;j>=1;j--){
                if(s.a[i]<s.a[j]) cnt++;
            }
            sum+=fab[i-1]*cnt;
        }
        return sum;
    }
    int dir[][2] = {{-1,0},{1,0},{0,-1},{0,1}}; ///上下左右
    bool change(Node &s,int _x,int k){
        int x = (_x-1)/3+1;
        int y = _x%3==0?3:_x%3;
        int nextx = x+dir[k][0];
        int nexty = y+dir[k][1];
        if(nextx<1||nexty>3||nexty<1||nexty>3) return false;
        swap(s.a[_x],s.a[(nextx-1)*3+nexty]);
        s._x = (nextx-1)*3+nexty;
        return true;
    }
    void bfs(){
        for(int i=0;i<N;i++){
            way[i].pre = -1;
        }
        memset(vis,false,sizeof(vis));
        Node s;
        for(int i=1;i<=9;i++){
            s.a[i] = i;
        }
        s.Hash = 0,s._x = 9;
        vis[0] = 1;
        queue<Node> q;
        q.push(s);
        while(!q.empty()){
            Node now = q.front();
            q.pop();
            Node next;
            next = now;
            if(change(next,next._x,0)){
                int k = contor(next);
                if(!vis[k]){
                    vis[k] = true;
                    next.Hash = k;
                    way[k].pre = now.Hash;
                    way[k].c = 'd';
                    q.push(next);
                }
            }
            next = now;
            if(change(next,next._x,1)){
                int k = contor(next);
                if(!vis[k]){
                    vis[k] = true;
                    next.Hash = k;
                    way[k].pre = now.Hash;
                    way[k].c = 'u';
                    q.push(next);
                }
            }
            next = now;
            if(change(next,next._x,2)){
                int k = contor(next);
                if(!vis[k]){
                    vis[k] = true;
                    next.Hash = k;
                    way[k].pre = now.Hash;
                    way[k].c = 'r';
                    q.push(next);
                }
            }
            next = now;
            if(change(next,next._x,3)){
                int k = contor(next);
                if(!vis[k]){
                    vis[k] = true;
                    next.Hash = k;
                    way[k].pre = now.Hash;
                    way[k].c = 'l';
                    q.push(next);
                }
            }
        }
    }
    char str[10];
    char ans[10000];
    int t = 0;
    void dfs(int k){
        if(way[k].pre==-1) return;
        dfs(way[k].pre);
        ans[t++]=way[k].c;
    }
    int main()
    {
        bfs();
        while(scanf("%s",str)!=EOF){
            Node s;
            s.a[1] = (str[0]=='x')?9:str[0]-'0';
            for(int i=2;i<=9;i++){
                scanf("%s",str);
                s.a[i] = (str[0]=='x')?9:str[0]-'0';
            }
            int k = contor(s);
            ans;
            t = 0;
            dfs(k);
            if(t==0){
                printf("unsolvable
    ");
                continue;
            }
            for(int i=t-1;i>=0;i--){
                printf("%c",ans[i]);
            }
            printf("
    ");
        }
        return 0;
    }
  • 相关阅读:
    jQuery的优点——(一)
    js学习之函数表达式及闭包
    js的面向对象的程序设计之理解继承
    js之引用类型
    js的基本概念详解
    有关js的变量、作用域和内存问题
    js和HTML结合(补充知识:如何防止文件缓存的js代码)
    富豪凯匹配串
    2018 ccpc final
    蒟蒻的个人第一篇博客
  • 原文地址:https://www.cnblogs.com/liyinggang/p/5753882.html
Copyright © 2011-2022 走看看