zoukankan      html  css  js  c++  java
  • csu 1806 & csu 1742 (simpson公式+最短路)

    1806: Toll

    Time Limit: 5 Sec  Memory Limit: 128 MB  Special Judge
    Submit: 256  Solved: 74
    [Submit][Status][Web Board]

    Description

     In ICPCCamp, there are n cities and m unidirectional roads between cities. The i-th road goes from the ai-th city to the bi-th city. For each pair of cities u and v, there is at most one road from u to v.
    As traffic in ICPCCamp is becoming heavier, toll of the roads also varies. At time t, one should pay (ci⋅t+di) dollars to travel along the i-th road.
    Bobo living in the 1-st city would like to go to the n-th city. He wants to know the average money he must spend at least if he starts from city 1 at t∈[0,T]. Note that since Bobo's car is super-fast, traveling on the roads costs him no time.
    Formally, if f(t) is the minimum money he should pay from city 1 to city n at time t, Bobo would like to find

    Input

    The first line contains 3 integers n,m,T (2≤n≤10,1≤m≤n(n-1),1≤T≤104).
    The i-th of the following m lines contains 4 integers ai,bi,ci,di (1≤ai,bi≤n,ai≠bi,0≤ci,di≤103).
    It is guaranteed that Bobo is able to drive from city 1 to city n.

    Output

     A floating number denotes the answer. It will be considered correct if its absolute or relative error does not exceed 10-6.

    Sample Input

    3 3 2
    1 2 1 0
    2 3 1 0
    1 3 1 1
    3 3 2
    1 2 1 0
    2 3 1 0
    1 3 0 5
    

    Sample Output

    1.75000000
    2.00000000
    


    这东西实在太好用了,可惜省赛不会...simpson公式就是求定积分用的,这题的F函数就是在时间点为 t 时从 1点到n点的最小花费.
    #include <bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const double INF = 999999999;
    struct Edge{
        int v,next;
        int c,d;
    }edge[1000];
    int head[100],tot;
    int n,m,T;
    void init(){
        memset(head,-1,sizeof(head));
        tot = 0;
    }
    void addEdge(int u,int v,int c,int d,int &k){
        edge[k].v = v,edge[k].c = c,edge[k].d = d,edge[k].next = head[u],head[u] = k++;
    }
    double dis[100];
    bool vis[100];
    double F(double x){
        for(int i=1;i<=n;i++){
            dis[i] = INF;
            vis[i] = false;
        }
        dis[1] = 0;
        queue<int> q;
        q.push(1);
        while(!q.empty()){
            int u = q.front();
            q.pop();
            vis[u] = false;
            for(int k = head[u];k!=-1;k = edge[k].next){
                int v = edge[k].v,c = edge[k].c,d = edge[k].d;
                double t = x*c+d;
                if(dis[v]>dis[u]+t){
                    dis[v] = dis[u]+t;
                    if(!vis[v]){
                        vis[v] = true;
                        q.push(v);
                    }
                }
            }
        }
        double ret = dis[n];
        return ret;
    }
    // 三点simpson法。这里要求F是一个全局函数
    double simpson(double a,double b){
        double c =  a+(b-a)/2;
        return (F(a) + 4*F(c) + F(b))*(b-a)/6;
    }
    // 自适应Simpson公式(递归过程)。已知整个区间[a,b]上的三点simpson值A
    double asr(double a , double b ,double eps ,double A){
        double c = a+ (b-a)/2;
        double L = simpson(a,c) ,R = simpson(c,b);
        if(fabs(A-L-R)<=15*eps) return L + R +(A-L-R)/15;
        return asr(a,c,eps/2,L) + asr(c,b,eps/2,R);
    }
    // 自适应Simpson公式(主过程)
    double asr(double a, double b, double eps) {
      return asr(a, b, eps, simpson(a, b));
    }
    
    int main()
    {
        while(scanf("%d%d%d",&n,&m,&T)!=EOF){
            init();
            for(int i=0;i<m;i++){
                int u,v,c,d;
                scanf("%d%d%d%d",&u,&v,&c,&d);
                addEdge(u,v,c,d,tot);
            }
            double ans = asr(0,T,1e-6)/T;
            printf("%.8lf
    ",ans);
        }
        return 0;
    }

    csu 1742

    1742: Integral Function

    Time Limit: 1 Sec  Memory Limit: 128 MB
    Submit: 79  Solved: 27
    [Submit][Status][Web Board]

    Description

    In mathematics, several function are unable to integral. For example:

    But you can get the answer by computer.

    Input

    There are no more than T (T<=30) cases. Each case include two integer a, b (0<a <= b<=10).

    Output

    Each case output an answer.

    (Please output the answer by ‘‘ printf (“%d ”,(int)(answer*10000)) ‘‘ ).

    Sample Input

    1 1
    1 2
    2 8

    Sample Output

    0
    6593
    -312

    这题更好用..直接带进去算
    #include <bits/stdc++.h>
    using namespace std;
    typedef long long LL;
     
    double F(double x){
        return sin(x)/x;
    }
    // 三点simpson法。这里要求F是一个全局函数
    double simpson(double a,double b){
        double c =  a+(b-a)/2;
        return (F(a) + 4*F(c) + F(b))*(b-a)/6;
    }
    // 自适应Simpson公式(递归过程)。已知整个区间[a,b]上的三点simpson值A
    double asr(double a , double b ,double eps ,double A){
        double c = a+ (b-a)/2;
        double L = simpson(a,c) ,R = simpson(c,b);
        if(fabs(A-L-R)<=15*eps) return L + R +(A-L-R)/15;
        return asr(a,c,eps/2,L) + asr(c,b,eps/2,R);
    }
    // 自适应Simpson公式(主过程)
    double asr(double a, double b, double eps) {
      return asr(a, b, eps, simpson(a, b));
    }
     
    int main()
    {
        double a,b;
        while(scanf("%lf%lf",&a,&b)!=EOF){
            printf("%d
    ",(int)(asr(a,b,1e-6)*10000));
        }
        return 0;
    }
     
     
  • 相关阅读:
    silverlight第三方控件
    Net4.0 Parallel编程(二)Data Parallelism 中_转
    html鼠标的各种形状
    C# Using用法三则
    让ExtJS里的GridPanel的列能够自动决定宽度
    extjs menu几个有用的属性
    ie中jQuery无法解析xml文件的解决方案
    .Net4.0 Parallel编程(一)Data Parallelism 上_转
    祝贺Silverlight 4 Tools 中文版发布
    .Net 4.0 ExpandoObject 使用(上)_转
  • 原文地址:https://www.cnblogs.com/liyinggang/p/5920740.html
Copyright © 2011-2022 走看看