1806: Toll
Time Limit: 5 Sec Memory Limit: 128 MB Special JudgeSubmit: 256 Solved: 74
[Submit][Status][Web Board]
Description
In ICPCCamp, there are n cities and m unidirectional roads between cities. The i-th road goes from the ai-th city to the bi-th city. For each pair of cities u and v, there is at most one road from u to v.
As traffic in ICPCCamp is becoming heavier, toll of the roads also varies. At time t, one should pay (ci⋅t+di) dollars to travel along the i-th road.
Bobo living in the 1-st city would like to go to the n-th city. He
wants to know the average money he must spend at least if he starts from
city 1 at t∈[0,T]. Note that since Bobo's car is super-fast, traveling on the roads costs him no time.
Formally, if f(t) is the minimum money he should pay from city 1 to city n at time t, Bobo would like to find
Input
The first line contains 3 integers n,m,T (2≤n≤10,1≤m≤n(n-1),1≤T≤104).
The i-th of the following m lines contains 4 integers ai,bi,ci,di (1≤ai,bi≤n,ai≠bi,0≤ci,di≤103).
It is guaranteed that Bobo is able to drive from city 1 to city n.
Output
A floating number denotes the answer. It will be considered correct if its absolute or relative error does not exceed 10-6.
Sample Input
3 3 2
1 2 1 0
2 3 1 0
1 3 1 1
3 3 2
1 2 1 0
2 3 1 0
1 3 0 5
Sample Output
1.75000000 2.00000000
这东西实在太好用了,可惜省赛不会...simpson公式就是求定积分用的,这题的F函数就是在时间点为 t 时从 1点到n点的最小花费.
#include <bits/stdc++.h> using namespace std; typedef long long LL; const double INF = 999999999; struct Edge{ int v,next; int c,d; }edge[1000]; int head[100],tot; int n,m,T; void init(){ memset(head,-1,sizeof(head)); tot = 0; } void addEdge(int u,int v,int c,int d,int &k){ edge[k].v = v,edge[k].c = c,edge[k].d = d,edge[k].next = head[u],head[u] = k++; } double dis[100]; bool vis[100]; double F(double x){ for(int i=1;i<=n;i++){ dis[i] = INF; vis[i] = false; } dis[1] = 0; queue<int> q; q.push(1); while(!q.empty()){ int u = q.front(); q.pop(); vis[u] = false; for(int k = head[u];k!=-1;k = edge[k].next){ int v = edge[k].v,c = edge[k].c,d = edge[k].d; double t = x*c+d; if(dis[v]>dis[u]+t){ dis[v] = dis[u]+t; if(!vis[v]){ vis[v] = true; q.push(v); } } } } double ret = dis[n]; return ret; } // 三点simpson法。这里要求F是一个全局函数 double simpson(double a,double b){ double c = a+(b-a)/2; return (F(a) + 4*F(c) + F(b))*(b-a)/6; } // 自适应Simpson公式(递归过程)。已知整个区间[a,b]上的三点simpson值A double asr(double a , double b ,double eps ,double A){ double c = a+ (b-a)/2; double L = simpson(a,c) ,R = simpson(c,b); if(fabs(A-L-R)<=15*eps) return L + R +(A-L-R)/15; return asr(a,c,eps/2,L) + asr(c,b,eps/2,R); } // 自适应Simpson公式(主过程) double asr(double a, double b, double eps) { return asr(a, b, eps, simpson(a, b)); } int main() { while(scanf("%d%d%d",&n,&m,&T)!=EOF){ init(); for(int i=0;i<m;i++){ int u,v,c,d; scanf("%d%d%d%d",&u,&v,&c,&d); addEdge(u,v,c,d,tot); } double ans = asr(0,T,1e-6)/T; printf("%.8lf ",ans); } return 0; }
csu 1742
1742: Integral Function
Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 79 Solved: 27
[Submit][Status][Web Board]
Description
In mathematics, several function are unable to integral. For example:
But you can get the answer by computer.
Input
There are no more than T (T<=30) cases. Each case include two integer a, b (0<a <= b<=10).
Output
Each case output an answer.
(Please output the answer by ‘‘ printf (“%d ”,(int)(answer*10000)) ‘‘ ).
Sample Input
1 1
1 2
2 8
Sample Output
0
6593
-312
这题更好用..直接带进去算
#include <bits/stdc++.h> using namespace std; typedef long long LL; double F(double x){ return sin(x)/x; } // 三点simpson法。这里要求F是一个全局函数 double simpson(double a,double b){ double c = a+(b-a)/2; return (F(a) + 4*F(c) + F(b))*(b-a)/6; } // 自适应Simpson公式(递归过程)。已知整个区间[a,b]上的三点simpson值A double asr(double a , double b ,double eps ,double A){ double c = a+ (b-a)/2; double L = simpson(a,c) ,R = simpson(c,b); if(fabs(A-L-R)<=15*eps) return L + R +(A-L-R)/15; return asr(a,c,eps/2,L) + asr(c,b,eps/2,R); } // 自适应Simpson公式(主过程) double asr(double a, double b, double eps) { return asr(a, b, eps, simpson(a, b)); } int main() { double a,b; while(scanf("%lf%lf",&a,&b)!=EOF){ printf("%d ",(int)(asr(a,b,1e-6)*10000)); } return 0; }