zoukankan      html  css  js  c++  java
  • hdu 5912(迭代+gcd)

    Fraction

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 97    Accepted Submission(s): 64


    Problem Description
    Mr. Frog recently studied how to add two fractions up, and he came up with an evil idea to trouble you by asking you to calculate the result of the formula below:


    As a talent, can you figure out the answer correctly?
     
    Input
    The first line contains only one integer T, which indicates the number of test cases.

    For each test case, the first line contains only one integer n (n8).

    The second line contains n integers: a1,a2,an(1ai10).
    The third line contains n integers: b1,b2,,bn(1bi10).
     
    Output
    For each case, print a line “Case #x: p q”, where x is the case number (starting from 1) and p/q indicates the answer.

    You should promise that p/q is irreducible.
     
    Sample Input
    1 2 1 1 2 3
     
    Sample Output
    Case #1: 1 2
    Hint
    Here are the details for the first sample: 2/(1+3/1) = 1/2
     
    题意:求图上的公式的结果.直接迭代求然后约分
    #include <bits/stdc++.h>
    using namespace std;
    map<int ,int> value;
    int a[10],b[10];
    int gcd(int x,int y){
        return y==0?x:gcd(y,x%y);
    }
    int main()
    {
        int tcase,t=1;
        scanf("%d",&tcase);
        while(tcase--){
            int n,res1,res2;
            scanf("%d",&n);
            for(int i=1;i<=n;i++) scanf("%d",&a[i]);
            for(int i=1;i<=n;i++) scanf("%d",&b[i]);
            res1 = a[n],res2 = b[n];
            for(int i=n-1;i>=1;i--){
                int k = res1;
                res1 = a[i]*res1+res2;
                res2 = b[i]*k;
            }
            int d = gcd(res1,res2);
            printf("Case #%d: %d %d
    ",t++,res2/d,res1/d);
        }
        return 0;
    }
  • 相关阅读:
    RAM,ROM,内存还有硬盘到底有什么区别呢
    MySQL中的这个池子
    apk安装包介绍(下载安装,存储的位置,路径,可以对里面的文件进行修改吗)
    论文查询
    PID算法
    数组指针与指针数组
    2020 最佳开源项目出炉
    反射机制调用无参和有参方法以及调用私有方法
    CSS概述 CSS声明
    WEB概述
  • 原文地址:https://www.cnblogs.com/liyinggang/p/5931382.html
Copyright © 2011-2022 走看看