zoukankan      html  css  js  c++  java
  • hdu 5912(迭代+gcd)

    Fraction

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 97    Accepted Submission(s): 64


    Problem Description
    Mr. Frog recently studied how to add two fractions up, and he came up with an evil idea to trouble you by asking you to calculate the result of the formula below:


    As a talent, can you figure out the answer correctly?
     
    Input
    The first line contains only one integer T, which indicates the number of test cases.

    For each test case, the first line contains only one integer n (n8).

    The second line contains n integers: a1,a2,an(1ai10).
    The third line contains n integers: b1,b2,,bn(1bi10).
     
    Output
    For each case, print a line “Case #x: p q”, where x is the case number (starting from 1) and p/q indicates the answer.

    You should promise that p/q is irreducible.
     
    Sample Input
    1 2 1 1 2 3
     
    Sample Output
    Case #1: 1 2
    Hint
    Here are the details for the first sample: 2/(1+3/1) = 1/2
     
    题意:求图上的公式的结果.直接迭代求然后约分
    #include <bits/stdc++.h>
    using namespace std;
    map<int ,int> value;
    int a[10],b[10];
    int gcd(int x,int y){
        return y==0?x:gcd(y,x%y);
    }
    int main()
    {
        int tcase,t=1;
        scanf("%d",&tcase);
        while(tcase--){
            int n,res1,res2;
            scanf("%d",&n);
            for(int i=1;i<=n;i++) scanf("%d",&a[i]);
            for(int i=1;i<=n;i++) scanf("%d",&b[i]);
            res1 = a[n],res2 = b[n];
            for(int i=n-1;i>=1;i--){
                int k = res1;
                res1 = a[i]*res1+res2;
                res2 = b[i]*k;
            }
            int d = gcd(res1,res2);
            printf("Case #%d: %d %d
    ",t++,res2/d,res1/d);
        }
        return 0;
    }
  • 相关阅读:
    oracle添加字段,备注
    oracle对日期date类型操作的函数
    查询效率例子收藏
    webuploader.min.js 简单例子
    select 数字/字符串/count(参数)/sum(数字) from table
    oracle常用分析函数 over(partition by xxx order by xxx)
    LigerUi遮罩的两个方法
    LigerUI子父窗口之间传参问题
    LigerUi自动检索输入
    LigerUi折叠与展开
  • 原文地址:https://www.cnblogs.com/liyinggang/p/5931382.html
Copyright © 2011-2022 走看看