zoukankan      html  css  js  c++  java
  • hdu4720 三角形的外接圆

    题意:
          给你四个点,问你第四个点是否在前三个点围成的三角形的外接圆上.
    思路:

          水题,就是练练用魔板罢了,当该三角形是锐角三角形的时候,圆心是任意两条边中垂线的交点,半径是圆心到任意一点的距离,否则圆心就是最长的那条边的中点位置,半径就是最长的那条边的一半..


    #include <cstdio>
    #include <cmath>
    #include <algorithm>
    #define maxn 60
    #define eps 1e-7
    using namespace std;
    int dcmp(double x)    //控制精度
    {
        if(fabs(x)<eps) return 0;
        else return x<0?-1:1;
    }
    double toRad(double deg)   //角度转弧度
    {
        return deg/180.0*acos(-1.0);
    }
    struct Point
    {
        double x,y;
        Point(){}
        Point(double x,double y):x(x),y(y) {}
        void input()
        {
            scanf("%lf %lf",&x,&y);
        }
    };
    typedef Point Vector;
    Vector operator+( Vector A, Vector B )       //向量加
    {
        return Vector( A.x + B.x, A.y + B.y );
    }
    Vector operator-(Vector A,Vector B)       //向量减
    {
        return Vector( A.x - B.x, A.y - B.y );
    }
    Vector operator*( Vector A, double p )      //向量数乘
    {
        return Vector( A.x * p, A.y * p );
    }
    Vector operator/( Vector A, double p )      //向量数除
    {
        return Vector( A.x / p, A.y / p );
    }
    bool operator<(const Point& A, const Point& B )   //两点比较
    {
        return dcmp( A.x - B.x ) < 0 || ( dcmp( A.x - B.x ) == 0 && dcmp( A.y - B.y ) < 0 );
    }
    bool operator==( const Point& a, const Point& b )   //两点相等
    {
        return dcmp( a.x - b.x ) == 0 && dcmp( a.y - b.y ) == 0;
    }
    struct Line
    {
        Point s,e;
        Vector v;
        Line() {}
        Line(Point s,Point v,int type)://法向量式
            s(s),v(v){}
        Line(Point s,Point e):s(s),e(e)//两点式
        {v=e-s;}
    
    };
    double Dot(Vector A,Vector B)//向量点乘
    {
        return A.x*B.x+A.y*B.y;
    }
    double Length(Vector A)//向量模
    {
        return sqrt(Dot(A,A));
    }
    double Angle(Vector A,Vector B)//向量夹角
    {
        return acos(Dot(A,B)/Length(A)/Length(B));
    }
    double Cross(Vector A,Vector B)//向量叉积
    {
        return A.x*B.y-A.y*B.x;
    }
    double Area2(Point A,Point B,Point C )//向量有向面积
    {
        return Cross(B-A,C-A);
    }
    double Dist(Point A,Point B)
    {
        return Length(A-B);
    }
    Vector Rotate(Vector A, double rad)//向量逆时针旋转
    {
        return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
    }
    Vector Normal(Vector A)//向量单位法向量
    {
        double L=Length(A);
        return Vector(-A.y/L,A.x/L);
    }
    Point GetLineIntersection(Line l1,Line l2)//两直线交点
    {
        Point P=l1.s;
        Vector v=l1.v;
        Point Q=l2.s;
        Vector w=l2.v;
        Vector u=P-Q;
        double t=Cross(w,u)/Cross(v,w);
        return P+v*t;
    }
    double DistanceToLine(Point P,Line L)//点到直线的距离
    {
        Point A,B;
        A=L.s,B=L.e;
        Vector v1=B-A,v2=P-A;
        return fabs(Cross(v1,v2))/Length(v1);
    }
    double DistanceToSegment(Point P, Line L)//点到线段的距离
    {
        Point A,B;
        A=L.s,B=L.e;
        if(A==B) return Length(P-A);
        Vector v1=B-A,v2=P-A,v3=P-B;
        if (dcmp(Dot(v1,v2))<0) return Length(v2);
        else if (dcmp(Dot(v1,v3))>0) return Length(v3);
        else return fabs(Cross(v1,v2)) / Length(v1);
    }
    Point GetLineProjection(Point P,Line L)// 点在直线上的投影
    {
        Point A,B;
        A=L.s,B=L.e;
        Vector v=B-A;
        return A+v*(Dot(v,P-A)/Dot(v,v));
    }
    bool OnSegment(Point p,Line l)//点在线段上包括端点
    {
        Point a1=l.s;
        Point a2=l.e;
        return dcmp(Cross(a1-p,a2-p))==0&&dcmp(Dist(p,a1)+Dist(p,a2)-Dist(a1,a2))==0;
    }
    bool Paralled(Line l1,Line l2)//直线平行
    {
        return dcmp(Cross(l1.e-l1.s,l2.e-l2.s))==0;
    }
    bool SegmentProperIntersection(Line l1,Line l2)//线段相交
    {
        if(Paralled(l1,l2))
        {
            return false;
        }
        Point t=GetLineIntersection(l1,l2);
        if(OnSegment(t,l1))
        {
            return true;
        }
        return false;
    }
    int ConvexHull(Point *p,int n,Point *ch)    //求凸包
    {
        sort(p,p+n);
        int m=0;
        for ( int i = 0; i < n; ++i )
        {
            while ( m > 1 && Cross( ch[m - 1] - ch[m - 2], p[i] - ch[m - 2] ) <= 0 ) --m;
            ch[m++] = p[i];
        }
        int k = m;
        for ( int i = n - 2; i >= 0; --i )
        {
            while ( m > k && Cross( ch[m - 1] - ch[m - 2], p[i] - ch[m - 2] ) <= 0 ) --m;
            ch[m++] = p[i];
        }
        if ( n > 1 ) --m;
        return m;
    }
    double PolygonArea(Point *p,int n)   //多边形有向面积
    {
        double area=0;
        for (int i=1;i<n-1;++i)
            area+=Cross(p[i]-p[0],p[i+1]-p[0]);
        return area/2.0;
    }
    
    double dis(Point A ,Point B)
    {
       double tmp = (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y);
       return sqrt(tmp);
    }
    
    typedef struct
    {
       double dis;
       Point A ,B;
    }EDGE;
    
    EDGE edge[5];
    
    bool campp(EDGE a ,EDGE b)
    {
       return a.dis < b.dis;
    }
    
    int main ()
    {
       int t ,i ,cas = 1;
       Point p1 ,p2 ,p3 ,p;
       Point O;
       double R;
       scanf("%d" ,&t);
       while(t--)
       {
          scanf("%lf %lf" ,&p1.x ,&p1.y);
          scanf("%lf %lf" ,&p2.x ,&p2.y);
          scanf("%lf %lf" ,&p3.x ,&p3.y);
          scanf("%lf %lf" ,&p.x ,&p.y);
          edge[1].A = p1 ,edge[1].B = p2;
          edge[2].A = p1 ,edge[2].B = p3;
          edge[3].A = p2 ,edge[3].B = p3;      
          edge[1].dis = dis(p1 ,p2);
          edge[2].dis = dis(p1 ,p3);
          edge[3].dis = dis(p2 ,p3);
          sort(edge + 1 ,edge + 3 + 1 ,campp);
          if(edge[1].dis * edge[1].dis + edge[2].dis * edge[2].dis <= edge[3].dis * edge[3].dis)
          {
             O.x = (edge[3].A.x + edge[3].B.x) / 2;
             O.y = (edge[3].A.y + edge[3].B.y) / 2;
             
             R = edge[3].dis / 2;
          }
          else
          {
             Line L1 = Line((p1 + p2)/2 ,Normal(p1 - p2),1);
             Line L2 = Line((p1 + p3)/2 ,Normal(p1 - p3),1);
             O = GetLineIntersection(L1 ,L2);
             R = dis(O ,p1);
          }
          double diss = dis(p ,O);
          if(diss <= R) printf("Case #%d: Danger
    " ,cas ++);
          else printf("Case #%d: Safe
    " ,cas ++);
       }
       return 0;
    }
          
             
    

  • 相关阅读:
    [Algorithms] Counting Sort
    [LeetCode] Sort Colors
    [LeetCode] Contains Duplicate III
    [LeetCode] Contains Duplicate
    [LeetCode] Two Sum II
    [LeetCode] Linked List Cycle II
    [LeetCode] Linked List Cycle
    [LeetCode] Longest Palindromic Substring
    [LeetCode] Two Sum
    [LeetCode] Rectangle Area
  • 原文地址:https://www.cnblogs.com/csnd/p/12063142.html
Copyright © 2011-2022 走看看