「Luogu2257」YY的GCD
蒟蒻的第一道莫反
跟着题解推的式子,但还是记录一下过程吧
本文可能在一定程度上存在谬误,请谨慎分析
若发现文中有错误,如您愿意,恳请您向我指出,不胜感激
Solution
题目要求:
[ans=sum_{i=1}^Nsum_{j=1}^M[gcd(i,j)in prime]
]
令(f(p)=sum_{i=1}^Nsum_{j=1}^M[gcd(i,j)=p](pin prime))
再令(g(p)=sum_{i=1}^Nsum_{j=1}^M[p|gcd(i,j)](pin prime))
于是有
[g(n)=sum_{n|d}f(d)
]
反演后可得
[f(n)=sum_{n|d}mu(frac{d}{n})g(d)
]
又知(g(d)=lfloorfrac{N}{d} floorlfloorfrac{M}{d} floor)
于是有
[ans=sum_{nin prime}f(n)=sum_{nin prime}sum_{n|d}mu (frac{d}{n})lfloorfrac{N}{d}
floorlfloorfrac{M}{d}
floor\=sum_{n|d}lfloorfrac{N}{d}
floorlfloorfrac{M}{d}
floorsum_{nin prime}mu(frac{d}{n})\=sum_{d=1}^{min(N,M)}lfloorfrac{N}{d}
floorlfloorfrac{M}{d}
floorsum_{n|d,nin prime}mu(frac{d}{n})
]
令(sum(d)=sum_{n|d,nin prime}mu(frac{d}{n})),预处理(sum(d))
那么答案即
[ans=sum_{d=1}^{min(M,N)}lfloorfrac{N}{d}
floorlfloorfrac{M}{d}
floor sum(d)
]
(sum sum(d))仍可以利用前缀和优化,(sumlfloorfrac{N}{d} floorlfloorfrac{M}{d} floor)利用整除分块优化,最终时间复杂度为(O(Tsqrt{min(N,M)}+k)),(k)为预处理复杂度
Code
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#define maxn 10000005
#define N 10000000
using namespace std;
typedef long long ll;
template <typename T> void read(T &t)
{
t=0;int f=0;char c=getchar();
while(!isdigit(c)){f|=c=='-';c=getchar();}
while(isdigit(c)){t=t*10+c-'0';c=getchar();}
if(f)t=-t;
}
int T;
int n,m;
int pri[maxn],pcnt,nop[maxn];
int mu[maxn];
ll sum[maxn],up;
void GetPrime()
{
nop[1]=1,mu[1]=1;
for(register int i=2;i<=N;++i)
{
if(!nop[i])pri[++pcnt]=i,mu[i]=-1;
for(register int j=1;j<=pcnt && i*pri[j]<=N;++j)
{
nop[i*pri[j]]=1;
if(i%pri[j]==0)break;
else mu[i*pri[j]]=-mu[i];
}
}
for(register int i=1;i<=pcnt;++i)
for(register int j=1;pri[i]*j<=N;++j)
sum[pri[i]*j]+=mu[j];
for(register int i=1;i<=N;++i)
sum[i]+=sum[i-1];
}
ll Calc()
{
ll re=0;
for(register int l=1,r;l<=up;l=r+1)
{
r=min(n/(n/l),m/(m/l));
re+=1ll*(n/l)*(m/l)*(sum[r]-sum[l-1]);
}
return re;
}
int main()
{
read(T);
GetPrime();
while(T--)
{
read(n),read(m);
up=min(n,m);
printf("%lld
",Calc());
}
return 0;
}