Spark MLlib提供了一些基本的统计学的算法,下面主要说明一下:
1、Summary statistics
对于RDD[Vector]类型,Spark MLlib提供了colStats的统计方法,该方法返回一个MultivariateStatisticalSummary
的实例。他封装了列的最大值,最小值,均值、方差、总数。如下所示:
val conf = new SparkConf().setAppName("Simple Application").setMaster("yarn-cluster") val sc = new SparkContext(conf) val observations = sc.textFile("/user/liujiyu/spark/mldata1.txt") .map(_.split(' ') // 转换为RDD[Array[String]]类型 .map(_.toDouble)) // 转换为RDD[Array[Double]]类型 .map(line => Vectors.dense(line)) //转换为RDD[Vector]类型 // Compute column summary statistics. val summary: MultivariateStatisticalSummary = Statistics.colStats(observations) println(summary.mean) // a dense vector containing the mean value for each column println(summary.variance) // column-wise variance println(summary.numNonzeros) // number of nonzeros in each column
2、Correlations(相关性)
计算两个序列的相关性,提供了计算Pearson’s and Spearman’s correlation.如下所示:
val conf = new SparkConf().setAppName("Simple Application").setMaster("yarn-cluster") val sc = new SparkContext(conf) val observations = sc.textFile("/user/liujiyu/spark/mldata1.txt") val data1 = Array(1.0, 2.0, 3.0, 4.0, 5.0) val data2 = Array(1.0, 2.0, 3.0, 4.0, 5.0) val distData1: RDD[Double] = sc.parallelize(data1) val distData2: RDD[Double] = sc.parallelize(data2) // must have the same number of partitions and cardinality as seriesX // compute the correlation using Pearson's method. Enter "spearman" for Spearman's method. If a // method is not specified, Pearson's method will be used by default. val correlation: Double = Statistics.corr(distData1, distData2, "pearson") val data: RDD[Vector] = observations // note that each Vector is a row and not a column // calculate the correlation matrix using Pearson's method. Use "spearman" for Spearman's method. // If a method is not specified, Pearson's method will be used by default. val correlMatrix: Matrix = Statistics.corr(data, "pearson")