zoukankan      html  css  js  c++  java
  • 【实战】Windows10+YOLOv3实现检测自己的数据集(1)——制作自己的数据集

    本文将从以下三个方面介绍如何制作自己的数据集

    一、数据标注

    在深度学习的目标检测任务中,首先要使用训练集进行模型训练。训练的数据集好坏决定了任务的上限。下面介绍两种常用的图像目标检测标注工具:LabelmeLabelImg。

    (1)Labelme

    Labelme适用于图像分割任务和目标检测任务的数据集制作,它来自该项目:https://github.com/wkentaro/labelme 。

    按照项目中的教程安装完毕后,应用界面如下图所示

    它能够提供多边形、矩形、圆形、直线和点的图像标注,并将结果保存为 JSON 文件。

    (2)LabelImg

    LabelImg适用于目标检测任务的数据集制作。它来自该项目:https://github.com/tzutalin/labelImg

    应用界面如下图所示:

    它能够提供矩形的图像标注,并将结果保存为txt(YOLO)或xml(PascalVOC)格式。如果需要修改标签的类别内容,则在主目录data文件夹中的predefined_classes.txt文件中修改。

    我使用的就是这一个标注软件,标注结果保存为xml格式,后续还需要进行标注格式的转换。

    操作快捷键:

    Ctrl + u  加载目录中的所有图像,鼠标点击Open dir同功能
    Ctrl + r  更改默认注释目标目录(xml文件保存的地址) 
    Ctrl + s  保存
    Ctrl + d  复制当前标签和矩形框
    space     将当前图像标记为已验证
    w         创建一个矩形框
    d         下一张图片
    a         上一张图片
    del       删除选定的矩形框
    Ctrl++    放大
    Ctrl--    缩小
    ↑→↓←        键盘箭头移动选定的矩形框

    二、数据扩增

    在某些场景下的目标检测中,样本数量较小,导致检测的效果比较差,这时就需要进行数据扩增。本文介绍常用的6类数据扩增方式,包括裁剪、平移、改变亮度、加入噪声、旋转角度以及镜像。

    考虑到篇幅问题,将这一部分单列出来,详细请参考本篇博客:https://www.cnblogs.com/lky-learning/p/11653861.html

    三、将数据转换至COCO的json格式

    首先让我们明确一下几种格式,参考自【点此处】:

    3.1 csv

    • csv/
      • labels.csv
      • images/
        • image1.jpg
        • image2.jpg
        • ...

    labels.csv 的形式:

    • /path/to/image,xmin,ymin,xmax,ymax,label

    例如:

    • /mfs/dataset/face/image1.jpg,450,154,754,341,face
    • /mfs/dataset/face/image2.jpg,143,154,344,341,face

    3.2 voc

    标准的voc数据格式如下:

    VOC2007/

    • Annotations/
      • 0d4c5e4f-fc3c-4d5a-906c-105.xml
      • 0ddfc5aea-fcdac-421-92dad-144/xml
      • ...
    • ImageSets/
      • Main/
        • train.txt
        • test.txt
        • val.txt
        • trainval.txt
    • JPEGImages/
      • 0d4c5e4f-fc3c-4d5a-906c-105.jpg
      • 0ddfc5aea-fcdac-421-92dad-144.jpg
      • ...

    3.3 COCO

    coco/

    • annotations/
      • instances_train2017.json
      • instances_val2017.json
    • images/
      • train2017/
        • 0d4c5e4f-fc3c-4d5a-906c-105.jpg
        • ...
      • val2017
        • 0ddfc5aea-fcdac-421-92dad-144.jpg
        • ...

    Json file 格式: (imageData那一块太长了,不展示了)

    {
      "version": "3.6.16",
      "flags": {},
      "shapes": [
        {
          "label": "helmet",
          "line_color": null,
          "fill_color": null,
          "points": [
            [
              131,
              269
            ],
            [
              388,
              457
            ]
          ],
          "shape_type": "rectangle"
        }
      ],
      "lineColor": [
        0,
        255,
        0,
        128
      ],
      "fillColor": [
        255,
        0,
        0,
        128
      ],
      "imagePath": "004ffe6f-c3e2-3602-84a1-ecd5f437b113.jpg",
      "imageData": ""   # too long ,so not show here
      "imageHeight": 1080,
      "imageWidth": 1920
    }

    在上一节中提到,经过标注后的结果保存为xml格式,我们首先要把这些xml标注文件整合成一个csv文件。

    整合代码如下:

    import os
    import glob
    import pandas as pd
    import xml.etree.ElementTree as ET
    
    ## xml文件的路径
    os.chdir('./data/annotations/scratches')
    path = 'C:/Users/Admin/Desktop/data/annotations/scratches' # 绝对路径
    img_path = 'C:/Users/Admin/Desktop/data/images'
    
    def xml_to_csv(path):
        xml_list = []
        for xml_file in glob.glob(path + '/*.xml'):  #返回所有匹配的文件路径列表。
            tree = ET.parse(xml_file)
            root = tree.getroot()
    
            for member in root.findall('object'):
    #            value = (root.find('filename').text,
    #                     int(root.find('size')[0].text),
    #                     int(root.find('size')[1].text),
    #                     member[0].text,
    #                     int(member[4][0].text),
    #                     int(member[4][1].text),
    #                     int(member[4][2].text),
    #                     int(member[4][3].text)
    #                     )
                value = (img_path +'/' + root.find('filename').text,
                         int(member[4][0].text),
                         int(member[4][1].text),
                         int(member[4][2].text),
                         int(member[4][3].text),
                         member[0].text
                         )
                xml_list.append(value)
        #column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
        column_name = ['filename', 'xmin', 'ymin', 'xmax', 'ymax', 'class']
        xml_df = pd.DataFrame(xml_list, columns=column_name)
        return xml_df
    
    if __name__ == '__main__':
        image_path = path
        xml_df = xml_to_csv(image_path)
        ## 修改文件名称
        xml_df.to_csv('scratches.csv', index=None)
        print('Successfully converted xml to csv.')

    当显示 Successfully converted xml to csv 后,我们就得到了整理后的标记文件。

    在有些模型下,有了图像数据和csv格式的标注文件后,就可以进行训练了。但是在YOLOv3中,标记文件的类型为COCO的json格式,因此我们还得将其转换至json格式。

    转换代码:

    import os
    import json
    import numpy as np
    import pandas as pd
    import glob
    import cv2
    import shutil
    from IPython import embed
    from sklearn.model_selection import train_test_split
    np.random.seed(41)
    
    # 0为背景
    classname_to_id = {"scratches": 1,"inclusion": 2}
    
    class Csv2CoCo:
    
        def __init__(self,image_dir,total_annos):
            self.images = []
            self.annotations = []
            self.categories = []
            self.img_id = 0
            self.ann_id = 0
            self.image_dir = image_dir
            self.total_annos = total_annos
    
        def save_coco_json(self, instance, save_path):
            json.dump(instance, open(save_path, 'w'), ensure_ascii=False, indent=2)  # indent=2 更加美观显示
    
        # 由txt文件构建COCO
        def to_coco(self, keys):
            self._init_categories()
            for key in keys:
                self.images.append(self._image(key))
                shapes = self.total_annos[key]
                for shape in shapes:
                    bboxi = []
                    for cor in shape[:-1]:
                        bboxi.append(int(cor))
                    label = shape[-1]
                    annotation = self._annotation(bboxi,label)
                    self.annotations.append(annotation)
                    self.ann_id += 1
                self.img_id += 1
            instance = {}
            instance['info'] = 'spytensor created'
            instance['license'] = ['license']
            instance['images'] = self.images
            instance['annotations'] = self.annotations
            instance['categories'] = self.categories
            return instance
    
        # 构建类别
        def _init_categories(self):
            for k, v in classname_to_id.items():
                category = {}
                category['id'] = v
                category['name'] = k
                self.categories.append(category)
    
        # 构建COCO的image字段
        def _image(self, path):
            image = {}
            img = cv2.imread(self.image_dir + path)
            image['height'] = img.shape[0]
            image['width'] = img.shape[1]
            image['id'] = self.img_id
            image['file_name'] = path
            return image
    
        # 构建COCO的annotation字段
        def _annotation(self, shape,label):
            # label = shape[-1]
            points = shape[:4]
            annotation = {}
            annotation['id'] = self.ann_id
            annotation['image_id'] = self.img_id
            annotation['category_id'] = int(classname_to_id[label])
            annotation['segmentation'] = self._get_seg(points)
            annotation['bbox'] = self._get_box(points)
            annotation['iscrowd'] = 0
            annotation['area'] = 1.0
            return annotation
    
        # COCO的格式: [x1,y1,w,h] 对应COCO的bbox格式
        def _get_box(self, points):
            min_x = points[0]
            min_y = points[1]
            max_x = points[2]
            max_y = points[3]
            return [min_x, min_y, max_x - min_x, max_y - min_y]
        # segmentation
        def _get_seg(self, points):
            min_x = points[0]
            min_y = points[1]
            max_x = points[2]
            max_y = points[3]
            h = max_y - min_y
            w = max_x - min_x
            a = []
            a.append([min_x,min_y, min_x,min_y+0.5*h, min_x,max_y, min_x+0.5*w,max_y, max_x,max_y, max_x,max_y-0.5*h, max_x,min_y, max_x-0.5*w,min_y])
            return a
       
    
    if __name__ == '__main__':
        
        ## 修改目录
        csv_file = "data/annotations/scratches/scratches.csv"
        image_dir = "data/images/"
        saved_coco_path = "./"
        # 整合csv格式标注文件
        total_csv_annotations = {}
        annotations = pd.read_csv(csv_file,header=None).values
        for annotation in annotations:
            key = annotation[0].split(os.sep)[-1]
            value = np.array([annotation[1:]])
            if key in total_csv_annotations.keys():
                total_csv_annotations[key] = np.concatenate((total_csv_annotations[key],value),axis=0)
            else:
                total_csv_annotations[key] = value
        # 按照键值划分数据
        total_keys = list(total_csv_annotations.keys())
        train_keys, val_keys = train_test_split(total_keys, test_size=0.2)
        print("train_n:", len(train_keys), 'val_n:', len(val_keys))
        ## 创建必须的文件夹
        if not os.path.exists('%ssteel/annotations/'%saved_coco_path):
            os.makedirs('%ssteel/annotations/'%saved_coco_path)
        if not os.path.exists('%ssteel/images/train/'%saved_coco_path):
            os.makedirs('%ssteel/images/train/'%saved_coco_path)
        if not os.path.exists('%ssteel/images/val/'%saved_coco_path):
            os.makedirs('%ssteel/images/val/'%saved_coco_path)
        ## 把训练集转化为COCO的json格式
        l2c_train = Csv2CoCo(image_dir=image_dir,total_annos=total_csv_annotations)
        train_instance = l2c_train.to_coco(train_keys)
        l2c_train.save_coco_json(train_instance, '%ssteel/annotations/instances_train.json'%saved_coco_path)
        for file in train_keys:
            shutil.copy(image_dir+file,"%ssteel/images/train/"%saved_coco_path)
        for file in val_keys:
            shutil.copy(image_dir+file,"%ssteel/images/val/"%saved_coco_path)
        ## 把验证集转化为COCO的json格式
        l2c_val = Csv2CoCo(image_dir=image_dir,total_annos=total_csv_annotations)
        val_instance = l2c_val.to_coco(val_keys)
        l2c_val.save_coco_json(val_instance, '%ssteel/annotations/instances_val.json'%saved_coco_path)

    至此,我们的数据预处理工作就做好了

    四、参考资料

    • https://blog.csdn.net/sty945/article/details/79387054
    • https://blog.csdn.net/saltriver/article/details/79680189
    • https://www.ctolib.com/topics-44419.html
    • https://www.zhihu.com/question/20666664
    • https://github.com/spytensor/prepare_detection_dataset#22-voc
    • https://blog.csdn.net/chaipp0607/article/details/79036312
  • 相关阅读:
    OpenGL的glTranslatef平移变换函数详解
    OpenGL的glRotatef旋转变换函数详解
    OpenGL的GLUT初始化函数[转]
    OpenGL的GLUT事件处理(Event Processing)窗口管理(Window Management)函数[转]
    OpenGL的GLUT注册回调函数[转]
    OpenGL的gluLookAt和glOrtho的关系
    OpenGL的glClearColor和glClear改变背景颜色
    OpenGL的gluPerspective和gluLookAt的关系[转]
    OpenGL的glOrtho平行投影函数详解[转]
    OpenGL的glViewport视口变换函数详解[转]
  • 原文地址:https://www.cnblogs.com/lky-learning/p/11640180.html
Copyright © 2011-2022 走看看